The influence of degree of loading and load placing on steerability of vehicles

TT.
2021;
: 60-74
https://doi.org/10.23939/tt2021.01.060
Received: March 03, 2021
Accepted: April 03, 2021
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The methodology of research of the influence of the degree of loading, kinematic parameters of movement, and nonlinear power characteristics of elastic elements and shock-absorbers of the suspension system on their steerability on curved sections of the road is developed. The research is based on the equation of kinetostatics of the system of sprung-unsprung part and differential equations that relate the motion of the sprung part of vehicles. Concerning the last, they take into account both loading of a vehicle and nonlinear-elastic characteristics of shock-absorbers. For the case when elastic characteristics of shock-absorbers are described by degree or close to it dependence, the fluctuation of sprung part is described analytically. Their peculiarity is that the frequency and therefore dynamic force of wheels pressure on the bearing surface (road) depends on the amplitude. It is the last value and characteristics of the road surface that determine the main parameters of steerability and stability of the movement of wheeled vehicles along curved sections of the road. Taken together, the mentioned above allowed to obtain the dependence of the critical value of the dynamic angle of rotation of the steered wheels, as a function of the amplitude of longitudinal-angular oscillations, kinematic motion parameters, and the level of loading of a vehicle. It is established:

-        fluctuation of the sprung part significantly reduce the value of the limiting angle of rotation of the steered wheels along the curved sections of the road;

-        for the period of acceleration of the vehicle and the closer location of the center of gravity of the cargo transported to the tailgate, the limit value of the dynamic angle of rotation of the steered wheels is less;

-        the suspension system with the progressive law of change of regenerative force of elastic shock-absorbers in a wider range of change fluctuations amplitude of the suspended part satisfies ergonomic conditions of transportation.

The obtained calculated dependencies can simultaneously be basic during the modernization of existing or the creation of new suspension systems in order to improve the main operation characteristics of wheeled vehicles.

1. Hu, L., Fang, S., & Yang, J. (2014). Study of the Vehicle Controllability and Stability Based on Multi-body System Dynamics. The Open Mechanical Engineering Journal8(1), 865-871. doi: 10.2174/1874155X01408010865 (in English) https://doi.org/10.2174/1874155X01408010865

2. Ulsoy, A., Peng, H., & Çakmakci, M. (2012). Vehicle Stability Control. Automotive Control Systems  (pp. 257-271). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511844577.018 (in English) https://doi.org/10.1017/CBO9780511844577.018

3. Zhao, W., Qin, X., & Wang, C. (2018). Yaw and lateral stability control for four-wheel steer-by-wire system. IEEE/ASME transactions on mechatronicsVolume 23 (6), 2628-2637. doi: 10.1109/TMECH.2018.2812220 (in English) https://doi.org/10.1109/TMECH.2018.2812220

4. Pukach, P. Y., Kuzio, I. V., Nytrebych, Z. M., & Il'Kiv, V. S. (2018). Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Scientific Bulletin of National Mining University,  Volume 1, 68-73. doi:10.29202/nvngu/2018-1/9 (in English) https://doi.org/10.29202/nvngu/2018-1/9

5. Calvo, J. A., San Román, J. L., & Álvarez-Caldas, C. (2013). Procedure to verify the suspension system on periodical motor vehicle inspection. International journal of vehicle design63(1), 1-17. doi: 10.1504/IJVD.2013.055497 (in English) https://doi.org/10.1504/IJVD.2013.055497

6. Sakhno, V. P., Yashchenko, D. M., Marchuk, R. M., Marchuk, N. M., & Lyashuk, O. L. (2020). Research of a Truck Train Movement when Driving Semitrailer by Slowdowning of Wheels of One Axis Pin on the Model. International Journal of Automotive and Mechanical Engineering17(1), 7749-7757. doi: 10.15282/ijame.17.1.2020.21.0576 (in English) https://doi.org/10.15282/ijame.17.1.2020.21.0576

7. Ahmad, I., & Khan, A. (2018). A comparative analysis of linear and nonlinear semi-active suspension system. Mehran University Research Journal of Engineering and TechnologyVolume 37(2), 233-240. (in English) https://doi.org/10.22581/muet1982.1802.01

8. Hrubel M., Nanivskyy R., & Sokil M. (2014). Kolyvannya pidresorenoyi chastyny kolisnoho transportnoho zasobu ta yikh vplyv na stiykist rukhu vzdovzh kryvoliniynoyi dilyanky shlyakhu [Oscillations of the sprung part of wheeled vehicles and its influence on road holding along the curvilinear stretch of a track]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of UNFU], Volume 24.1, 155–162. (in Ukrainian)

9. Georgiev, Z., & Kunchev, L. (2018). Study of the vibrational behaviour of the components of a car suspension. In MATEC Web of Conferences (Vol. 234, p. 02005). EDP Sciences. doi: 10.1051/matecconf/201823402005 (in English) https://doi.org/10.1051/matecconf/201823402005

10. Hrubel M. Nanivskyi R. & Sokil M. (2015). Rezonansni kolyvannia pidresorenoi chastyny kolisnykh transportnykh zasobiv pid chas rukhu vzdovzh vporiadkovanoi systemy nerivnostei [Resonant oscillations of the sprung part of wheeled vehicles when  moving along the ordered system of inequalities], Visnyk Vinnytsʹkoho politekhnichnoho instytutu [The journal “Visnyk of Vinnytsia Polytechnical Institute”], Volume 1, 155-161 (in Ukrainian)

11. Bozhkova L. V. Riabov V. H. & Norytsyna H. Y. (2009). Vlyianye poperechnykh vynuzhdennykh kolebanyi kuzova na oprokydyvanye avtomobylia pry obezde prepiatstvyiaia [Influence of the cross-section forced fkuctuations of a body on car overturning at an obstacle detour], Transportne dilo Rosiyi, [Transport business in russian], Volume 3, 141-151 (in Russian)

12. Andruhiv, A., Sokil, B., Sokil, M., Vovk, Y., & Levkovych, M. (2019). The influence of the cinematic parameters of movement and sprung mass vibrations of wheeled vehicles on the move along the curvedlinear sections of the way. Materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii „Aktualni problemy transportu“ [Proceedings of the International Scientific and Technical Conference "Actual Problems of Transport"], 259-264. (in English)

13. Sokil, B., Lyashuk, O. L., Sokil, M., Popovich, P. V., Vovk, Y. Y., & Perenchuk, O. Z. (2018). Dynamic Effect of Cushion Part of Wheeled Vehicles on Their Steerability. International Journal of Automotive and Mechanical Engineering, Volume 15, Issue 1, 4880-4892. doi: 10.15282/ijame.15.1.2018.1.0380 (in English) https://doi.org/10.15282/ijame.15.1.2018.1.0380

14. Pavlovskyy M.A., Putyata T.V. (1985). Teoretycheskaya mekhanyka: dlya stud. Vuzov [Theoretical mechanics for university students] Vyshcha shkola. (in Russian)

15. Koul Dzh. (1972). Metody vozmushcheniy v prikladnoy matematike [Compensation methods in applied mechanics]. Mir (in Russian)

16. Senyk P. M. (1969). Obernennya nepovnoyi Veta-funktsiyi [Inversion of an incomplete Veta function]. Ukr. mat. Zhurnal [Ukr. mat. Journal], 21(3), 325–333. (in Ukrainian) https://doi.org/10.1007/BF01085368

17. Nazarkevych, M. (2012). Doslidzhennya zalezhnostey Beta- ta Ateb-funktsiy [Investigation of dependences of beta and ateb functions]. Kompyuterni nauky ta informatsiyni tekhnolohiyi [Computer science and information technology]. 732, 207-216 (in Ukrainian)

18. Silveira, M., Wahi, P., & Fernandes, J. C. M. (2017). Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Communications in Nonlinear Science and Numerical Simulation43, 14-24. doi: 10.1016/j.cnsns.2016.06.029 (in English) https://doi.org/10.1016/j.cnsns.2016.06.029

19. Pavlenko, V. M., & Kryvoruchko, O. O. (2014). Suchasnyy stan rozvytku aktyvnykh pidvisok dlya lehkovykh avtomobiliv [Modern state of development of active suspensions of motor cars]. Visnyk NTU KhPI [Bulletin NTU KhPI], Automobile and tractor manufacture1052, 54-60. (in Ukrainian)

20. Sert, E., & Boyraz, P. (2017). Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering science and technology, an international journal20(3), 997-1012. doi: 10.1016/j.jestch.2017.03.007 (in English) https://doi.org/10.1016/j.jestch.2017.03.007

21. Artyushenko, A., & Suyarkov, O. (2013). Vyvchennia vplyvu kharakterystyk pidvisky malohabarytnoho avtomobilia na yakist yizdy ta yoho modernizatsiia [Study of influence of suspension characteristics of small size car on ride quality and its modernization]. Visnyk NTU KhPI [Bulletin NTU KhPI]1004, 21-27. (in Ukrainian)

22. Podryhalo, M. A., Volkov, V. P., Boboshko, A. A., Pavlenko, V. A., Baitsur, M. V., Nazarov, A. I., & Aleksev, V. O. (2006). Stiikist kolisnykh transportnykh zasobiv do zanosu pry halmuvanni ta shliakhy yoho pidiomu [Wheeled vehicles resistance to skidding whilst breaking and ways of its rising]. Kharkiv: KNARU. (in Ukrainian)