Enabling Smart Spectroscopy via Arduino Iot Cloud

2025;
: pp. 41 - 46
1
Ivan Franko National University of Lviv, Ukraine
2
Ivan Franko National University of Lviv, Ukraine

This work presents a cloud-integrated IoT system for the real-time control and spectral monitoring of tunable light sources. Leveraging the Arduino IoT Cloud platform, the system has established bidirectional commu- nication via the MQTT protocol to manage individual color channels of a programmable light source. Spectral data has been captured using a StellarNet spectrometer and transmitted over to the Arduino IoT Cloud, enabling live visualization and feedback control on the cloud dashboard. This closed-loop architecture has facilitated precise spectral tuning based on user-defined input or automated routines, making it suitable for applications in photonics research and material characterization. The platform has demonstrated flexibility, remote accessibility, and modular integration of commercial spectrometers with cloud-based control interfaces.

  1. Gentile, A. F., Macrì, D., Carnì, D. L., Greco, E., & Lamonaca, F. (2024). A Performance Analysis of Security Protocols for Distributed Measurement Systems Based on Internet of Things with Constrained Hardware and Open Source Infrastructures. Sensors, 24(9), 2781. DOI:https://doi.org/10.3390/s24092781
  2. Has, M., Kreković, D., Kušek, M., & Podnar Žarko, I. (2024).  Efficient Data Management in Agricultural IoT:Compression, Security, and MQTT Protocol Analysis. Sensors, 24(11), 3517. DOI: https://doi.org/ 10.3390/s24113517
  3. Hernández-Gutiérrez, C. A., Delgado-del-Carpio, M., Zebadúa-Chavarría, L. A., Hernández-de-León, H. R., Escobar-Gómez, E. N., & Quevedo-López, M. (2023). IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics, 12(14), 3042.DOI: https://doi.org/10.3390/electronics12143042
  4. Łuczak, D., Brock, S., & Siembab, K. (2023). Cloud Based Fault Diagnosis by Convolutional Neural Network as Time–Frequency RGB Image Recognition of Industrial Machine Vibration with Internet of Things Connectivity. Sensors, 23(7), 3755. DOI: https://doi.org/10.3390/ s23073755
  5. Stark, E., Kučera, E., Haffner, O.,  Drahoš,  P.,  & Leskovský, R. (2020). Using Augmented Reality and Internet of Things for Control and Monitoring of Mechatronic Devices. Electronics, 9(8), 1272. DOI: https://doi.org/10.3390/electronics9081272
  6. Baird, S. G. & Sparks, T. D. (2023). Building a “Hello World” for self-driving labs: The Closed-loop Spectro- scopy Lab Light-mixing demo. STAR Protocols, 4(2), 102329. DOI: https://doi.org/10.1016/j.xpro.2023.102329
  7. Kneifel, J., Roj, R., Woyand, H.-B., Theiß, R., & Dültgen,P. (2023). An IIoT-Device for Acquisition and Analysis of High-Frequency Data Processed by Artificial Intelligence. IoT, 4(3), 244-264. DOI: https://doi.org/10.3390/ iot4030013
  8. Botero-Valencia, J. S. & Valencia-Aguirre, J. (2021). Portable low-cost IoT hyperspectral acquisition device for indoor/outdoor   applications.   HardwareX,   10,   e00216.DOI: https://doi.org/10.1016/j.ohx.2021.e00216
  9. Taimun, T. Y., Sharan, M. I., Azad, A., & Joarder, M. I. (2025). Smart Maintenance and Reliability Engineering in Manufacturing. Saudi J Eng Technol, 10(4). DOI: https://doi.org/10.36348/sjet.2025.v10i04.009
  10. Baudin, P. V., Ly, V. T., Pansodtee, P., Jung, E. A., Currie,R., Hoffman, R., Willsey, H. R., Pollen, A. A., Nowakowski, T. J., Haussler, D., Mostajo-Radji, M. A., Salama, S. R., & Teodorescu, M. (2022). Low cost cloud- based remote microscopy for biological  sciences.  Internet of Things, 18, 100454. DOI: https://doi.org/10.1016/ j.iot.2021.100454
  11. Pissard, A., Marques, E. J. N., Dardenne, P., Lateur, M., Pasquini, C., Pimentel, M. F., Pierna, J. A. F., & Baeten,V. (2021). Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biology and Technology, 172, 111375. DOI: https://doi.org/10.1016/ j.postharvbio.2020.111375
  12. Aira, J., Olivares, T., Delicado, F. M. (2022). SpectroGLY: A Low-Cost IoT-Based Ecosystem for the Detection of Glyphosate Residues in Waters. IEEE Transactions on Instrumentation and Measurement, vol. 71, 6005610. DOI: https://doi.org/10.1109/TIM.2022.3196947
  13. Kadham, N.R., Krishna, P.G. & Ravi, K.S. (2025). IoT- Based Remote Monitoring as a Distance (Online) Laboratory for Applied Learning. SN Computer Science. 6, 114. DOI: https://doi.org/10.1007/s42979-024-03649-9
  14. Adão, T., Pinho, T., Pádua, L., Magalhães, L. G., J. Sousa, J., & Peres, E. (2021). Prototyping IoT-Based Virtual Environments: An Approach toward the Sustainable Remote Management of Distributed Mulsemedia Setups. Applied              Sciences, 11(19),    8854. https://doi.org/10.3390/app11198854
  15. Anhelo, J., Robles, A., Martin, S. (2023). Internet of Things Remote Laboratory for MQTT Remote Experimentation. Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence. UCAmI 2023. Lecture Notes in Networks and Systems, 841. DOI: https://doi.org/10.1007/978-3-031- 48590-9_16
  16. Rocha, D., Teixeira, G., Vieira, E., Almeida, J., & Ferreira,J. (2023). A modular in-vehicle C-ITS architecture for sensor data collection, vehicular communications and cloud connectivity. Sensors, 23(3), 1724. DOI: https://doi.org/10.3390/s23031724
  17. Knight, N., Kanza, S., Cruickshank, D., Brocklesby, W., & Frey, J. G. (2020). Talk2Lab: The smart lab of the future. IEEE Internet of Things Journal, 7 (9), 8631-8640. DOI: https://doi.org/10.1109/JIOT.2020.2995323
  18. Villazon, A., Ormachea, O., Zenteno, A., Orellana, A. (2023). A Low-Cost Spectrometry Remote Laboratory. In: Auer, M.E., El-Seoud, S.A., Karam, O.H. Artificial Intelligence and Online Engineering. REV 2022. Lecture Notes  in  Networks  and  Systems,  524.  Springer,  Cham.DOI: https://doi.org/10.1007/978-3-031-17091-1_21
  19. Caribo, O. F., Sibomana, L., Byungura, J. C., Asingwire,B. K., & Niyizamwiyitira, C. (2024). Digital Twins Applications in STEM Education: Challenges and Implementation   Opportunities   in    Developing Countries. IEEE Digital Education and MOOCS Conference    (DEMOcon),          1-6.         DOI: https://doi.org/10.1109/DEMOcon63027.2024.10747951
  20. Park, E., Lim, J., Park, B. C., & Kim, D. (2021). IoT-Based Research Equipment Sharing System for Remotely Controlled  Two-Photon Laser Scanning Microscopy. Sensors, 21(4), 1533. DOI: https://doi.org/10.3390/s2104153