This paper deals with the insight and analysis of the most widespread Word Sense Disambiguation methods and algorithms. The possibility of their practical implementation has been considered.
1. Разрешение лексической многозначности. – Available from: http://ru.wikipedia.org/wiki/ Разрешение_лексической_многозначности. 2. Kikas T. Word Sense Disambiguation WordNet::SenseRelate:: AllWords / T. Kikas, M. Treumuth. – 2007. – Available from: http://math.ut.ee/~treumuth/NLP/semantics2.pdf 3. Kolte S. WordNet: A Knowledge Source for Word Sense Disambiguation / S. Kolte, S. Bhirud. – India. – 2009. – Available from: http://www.academypublisher.com/ijrte/vol02/no04/ijrte0204213217.pdf. 4. Mocian H. Survey of Word Sense Disambiguation / H. Mocian. - Available from: http://www.horatiumocian.com/papers/ Word_Sense_Disamb_Survey.pdf. 5. Navigli R. Word Sense Disambiguation: A Survey / R. Navigli. – 2009. – Available from: http://www.dsi.uniroma1.it/~navigli/pubs/ACM_Survey_2009_Navigli.pdf 6. Palta E. Word Sense Disambiguation / E. Palta. – 2006-2007. – Available from: http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.102.2419&rep=rep1&type=pdf. 7. What is WordNet? – Available from: http://wordnet.princeton.edu/. 8. WordNet-based Algorithm for Word Sense Disambiguation. – Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.47.6728&rep=rep1&type=pdf. 9. Word Sense Disambiguation. – Available from: http://www.site.uottawa.ca/~szpak/teaching/5386/handouts/WSD-memo.pdf. 10. J. V´eronis. 2004. Hyperlex: lexical cartography for information retrieval. Computer Speech & Language,. 18(3):223-252. 11. Michael Lesk, Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone, ACM Special Interest Group for Design of Communication Proceedings of the 5th annual international conference on Systems documentation, p. 24 – 26, 1986.