MODELING AND PROTOTYPING OF AN ACOUSTOFLUIDIC SYSTEM FOR MICROPARTICLE SEPARATION

https://doi.org/10.23939/cds2025.01.261
Received: March 12, 2025
Revised: March 25, 2025
Accepted: March 31, 2025
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lodz University of Technology, Poland
4
Lodz University of Technology, Poland
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University, Ukraine

This article presents the results of numerical modeling and experimental prototyping of an acoustofluidic microchannel structure for the separation of microparticles suspended in a liquid medium. A two-dimensional model was developed to analyze the influence of geometric and physical parameters on the formation of the acoustic field within the microchannel and the efficiency of particle separation. Special attention was given to the configuration of interdigital transducers (IDT), channel width, thickness of the piezoelectric substrate, and the distance between the IDT and the channel. Based on the simulation results, a Lab-on-Chip prototype was fabricated using a silicon substrate, lithium niobate plate, and silver paste to form IDT electrodes via screen printing. A bonding method using double-sided adhesive tape was proposed to ensure tight sealing of the microchannels. The results confirm the potential of the proposed approach for developing compact acoustofluidic systems suitable for biomedical, environmental, and analytical applications

[1] Fan Y., Wang X., Ren J., Lin F., Wu J. Recent advances in acoustofluidic separation technology in biology (2022) // Microsystems & Nanoengineering, September 2022, https://doi.org/10.1038/s41378-022-00435-6

[2] A. Ebrahimi, K. Icoz, R. Didarian, C.-H. Shih, E. A. Tarim, B. Nasseri, A. Akpek, B. Cecen, A. Bal-Ozturk, K. Güleç, Y.-C. E. Li, S. Shih, B. Sirma Tarim, H. C. Tekin, E. Alarçin, M. Tayybi-Azar, H. Ghorbanpoor, C. Özel, A. Eker Sarıboyacı, F. Dogan Guzel, N. Bassous, S. R. Shin, H. Avci, Molecular Separation by Using Active and Passive Microfluidic chip Designs: A Comprehensive Review. Adv. Mater. Interfaces 2024, 11, 2300492. https://doi.org/10.1002/admi.202300492

[3] Wu, M., Ozcelik, A., Rufo, J. et al. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 5, 32 (2019). https://doi.org/10.1038/s41378-019-0064-3

[4] Hao N, Liu P, Bachman H, Pei Z, Zhang P, Rufo J, Wang Z, Zhao S, Huang TJ (2020) Acoustofluidics-assisted engineering of multifunctional three-dimensional zinc oxide nanoarrays. ACS Nano 14:6150–6163

[5] Li P, Huang TJ (2018) Applications of acoustofluidics in bioanalytical chemistry. Anal Chem 91:757–767

[6] Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, Lee K, Ashammakhi N, Dokmeci MR, Di Carlo D (2020) Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications. Small 16:2000171

[7] Akiyama Y, Egawa T, Koyano K, Moriwaki H (2020) Acoustic focusing of microplastics in microchannels: a promising continuous collection approach. Sensors Actuators B Chem 304:127328

[8] Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ (2020) Microfluidic isolation and enrichment of nanoparticles. ACS Nano 14:16220–16240

[9] Chen X, Miller A, Cao S, Gan Y, Zhang J, He Q, Wang R-Q, Yong X, Qin P, Lapizco-Encinas BH (2020) Rapid escherichia coli trapping and retrieval from bodily fluids via a three-dimensional bead-stacked nanodevice. ACS Appl Mater Interfaces 12:7888–7896

[10]     Wang H., Yuan F., Xie Z., Sun C., Wu F., Mikhaylov R., Shen M., Yang J., Zhou Y., Liang D., Sun X., Wu Z., Yang Z., Yang X., Modelling hybrid acoustofluidic devices for enhancing Nano- and Micro-Particle manipulation in microfluidics, Applied Acoustics, Volume 205, 109258, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2023.109258.

[11]     Nesmith A.P., Agarwal A., McCaina M.L. and Parker K.K. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation, Lab Chip, 2014, 14, 3925-3936, https://doi.org/10.1039/C4LC00688G

[12]     T. Klymkovych, N. Bokla, O. Matviykiv, V. Stakhiv and M. Melnyk, "Numerical Simulation and Analysis of the Acoustic Standing Wave Field Stability in Acoustofluidic Microchannel," 2022 IEEE XVIII International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana (Zakarpattya), Ukraine, 2022, pp. 57-60, https://doi.org/10.1109/MEMSTECH55132.2022.10002931