A methodical analysis of the basic problem related to quantum calculations of parameters of physical systems was made. Emphasis is placed on the physical principles of the operation of a quantum computer, with an emphasis on the fact that simultaneous access to all quantum states is important in quantum computing, which allows the simultaneous change of the quantum state from all superpositions in the qubit system. Emphasis is placed on the fact that in quantum algorithms the Fourier transform and the Hadamard transform are the basic operations - as a simple discrete Fourier transform. The reader's attention is drawn to the fact that quantum computing is primarily implemented in quantum objects with the properties of elementary NOT gates and controlled CNOT, which can be implemented on a Mach-Zehnder interferometer using the phenomena of photon interference and rotation of its polarization vector.
Despite the progress of conventional computers, the need for the development of quantum computing is due to the technological limitation due to the dimensional quantization of the electronic spectrum and the exponential increase in the time of calculations by classical algorithms when the volume of data increases. However, the widespread use of quantum computers is limited by a number of problems. This is, first of all, insufficient accuracy and high sensitivity to external influences that can destroy the quantum state. Therefore, to increase the accuracy of calculations on a quantum computer, the calculation algorithm must be repeated a certain number of times, and to avoid the destruction of the quantum states of the qubit, low temperatures are used.
- Шевченко С. Квантовий комп’ютер: стан проблеми у світі та в Україні. Стенограма доповіді на засіданні Президії НАН України 8 грудня 2021 року. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/ 185014/07-Shevchenko.pdf?sequence=1
- Shannon C. Collected Papers / Edited by N.J.A Sloane and Aaron D. Wyner. — IEEE press, 1993. — 923 с. — ISBN 0-7803-0434-9.
- Weisner S. Association for Computing Machinery, Special Interest Group in Algorithms and Computation Theory. 1983. Vol. 15, 78—83; Conjugate coding. Sigact News 15, 78-88 (1983).
- Feynman R. Simulating physics with computers. Int. J.Theor.Phys.21,467 (1982). 5.Deitsh D. Quantum theory, the church-turing principle and the universal quantum computer.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, v o l . 4 0 0 , n o 1 8 1 8 ,9 7 1 1 7 , J u l . 1 9 8 5 . https://doi.org/10.1098/rspa.1985.0070;
- D. Deutsch. Uncertainty in quantum measurements. Phys. Rev. Lett., 50(9):631–633, 1983; D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Proc. R. Soc. London A, 449(1937):669– 677, 1995.;D. Deutsch. Quantum theory, the Church-Turing Principle and the universal quantum computer.Proc. R. Soc. Lond.A,400:97, 1985.;
- D.Deutsch.Quantum computational networks.Proc.R.Soc.London A, 425:73, 1989. 6.Simon D. On the power of quantum computation. In Proceedings, 35th Annual Symposium on Foundations of Computer Science, pages 116–123, IEEE Press, Los Alamitos, CA, 1994;
- On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483, 1997. 7. Shor P. Algorithms for quantum computation: discrete logarithms and factoring / Foundation of Computer Science, 1994 Proceedings, 35th Annual symposiumon. – 1994. – pp.124-134.
- Elani Z. Q u b i t , Q u a n t u m E n t a n gl e me n t a n d al l t h a t : Quantum Computing Made Simple. https://www.academia.edu/41804659/Qubit_ Quantum _Entanglement_and_all_that_ Quantum_ Computing_Made_Simple.
- Ye Z., Lu Y. Quantum science: a review and current research trends . Journal of Management Analytics . Volume 9, 2022 - Issue 3.383-402.
- Kitaev A., Shen A., Vyalyi M.. Classical and Quantum Computation. Graduate Studies in Mathematics Vol.47. American Mathematical Society Providence, Rhode Island. https://www.ams.org/books/gsm/047/gsm047-endmatter.pdf.
- Benenti G., Casati G., D., Chapter 3 of: Principles of Quantum Computation and Information, World Scientific 2018 (doi:10.1142/10909, 2004 pdf).
- All Nobel Prizes 2022 - NobelPrize.org.
- Berkeley Physics Course: Wichmann E. Quantum Physics.v.4 McGraw-Hill Boo k Company ; Reif F. Statistical Physics.v.5 McGraw-Hill Book Company .
- Wooters K., Zurek H. A single quantum cannot be cloned. Nature. 1982. – Vol. 299, 802.
- Einstein A., Podolsky B., Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? . Phys. Rev. / G. D. Sprouse. American Physical Society, 1935. Vol. 47, Iss. 10,777–780. ISSN 0031-899X; 1536-6065 — doi:10.1103/PHYSREV.47.777.
- Bell J. On the Einstein Podolsky Rosen paradox Physics. G.D. Sprouse – American Physical Society, 1964. – Vol.1 – Is.3, 195-200.
- Aspect A. et.al.Experimental test of Bell`s inequalities using time-varying analyzers. Phys.Rev. Lett. 1982,v.49,1804-1807.
- А.Н. Омельянчук, Е.В. Ильичев, С.Н. Шевченко. Квантовые когерентные явления в джозефсоновских кубитах. Киев: Наукова думка.. 2013.
- Bennett C., Brassard G. et al. Teleporting of unknown quantum state via classical and Einstein- Podolsky-Rosen channels. Phys. Rev. Lett.Vol.70. –13 – 1993.
- Bennett C.Quantum cryptography using any two nonorthogonal states", Phys. Rev. Lett. 68, 3121-3124 (1992)].
- Grover L.Quantum Mechanics helps in searching for a needle in a haystack. arXiv:quant- ph/9706033 (quant-ph). 22. Kaiser S. , Granade C. . Learn Quantum Computing with Python and Q#: A hands-on approach.
- B. Omer. Simualtion of Quantum Computers. – Vienna:TU. - 1996. – 23.
- ECOQC White Paper on Quantum Key Distribution and Cryptography / Romain Alleaume, Jan Bouda, Cyril Branciard [et al.|. - Preprint : http://www. arxiv.org/abs/quant-ph/0701168vl.
- QPN-8505. Security Gateway: Data Sheet / MagiQ Technologies, Inc.. - Somerville, Massachusetts, USA : MagiQ Technologies, Inc., 2007, 110.12.2011]. - Mode of access: http://www.magiqtech.com/MagiQ/ Products_files/ 8505_Data_Sheet.pdf.
- Clavis [Electronic resource] : Quantum key distribution for r&d applications / ID Quantique SA. - Electronic data. - Geneva, Switzerland : http ://www. idquantique.com /scientific- instrumentation/clavis2-qkd-platforrn.html.
- Elliot C. Quantum Cryptography in Practice / Elliot C., Pearson D, Troxel G. - Preprint : arXiv:quant-ph/0307049.
- Килин С. Квантовая информация/ УФН, 1999, т.169, №5, 507–527
- Miszczak, J. Sec. 3 of: Models of quantum computation and quantum programming languages, Bull. Pol. Acad. Sci.-Tech. Sci., Vol. 59, No. 3 (2011), pp. 305-324 (arXiv:1012.6035).
- Войтович І.Д. Перспективи квантових обчислень з використанням надпровідності/ І.Д. Войтович, В.М. Корсунський // Математичні машини і системи. – 2008. № 4. – С. 23-56.
- Крохмальський Т. Квантові комп'ютери: основи й алгоритми (короткий огляд) / Т. Крохмальський // Журнал фізичних досліджень. Ін-ут фізики конденсованих систем НАН України. – 2004. – Т.8, № 1. – С. 1-15.