EVALUATION OF THE EM FIELD EXPOSURE IN THE RANGE OF 4G FREQUENCIES IN THE LABORATORY ENVIRONMENT

2023;
: 82-92
https://doi.org/10.23939/cds2023.01.082
Received: September 20, 2023
Revised: October 02, 2023
Accepted: October 10, 2023
1
Lviv Polytechnic National University, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
2
Lviv Polytechnic National University

The aim of paper is to estimate the electromagnetic (EM) field radiation on the human body in the range of 4G operations. The analytical approach consists of application of concept of the equivalent cylindrical monopole antenna presenting grounded standing human. The analytical formulas, allowing to determine the EM field exposure are derived. The experimental setup, consisting of the spectrum analyzer USB-SA44B supplemented by the respective software, notebook for analysis of signals, transmitting-receiving antenna array designed of four microstrip antennas, the transmitting antenna operating in the frequencies 0.9 GHz, 1.8 GHz and 2.45 GHz, and signal generator SA6 are used for the measurements. The designed setup demonstrates the possibility to extract the spectral characteristics of radiation in the range of 4G operations that will used subsequently for the comparison with the modeling data. It is observed that the fixed strength of radiation depends on the sources of radiation. The perspective of design is evaluation of the SAR at the laboratory environment.

1. N. Kuster, Q. Balzano, and J. C. Lin, Mobile Communications Safety (Telecommunications Technology & Applications Series). First ed. London: Springer, 1997. https://doi.org/10.1007/978-1-4613-1205-5

2. G. J. Hyland, “Physics and biology of mobile telephony,” Lancet. 2000 Nov 25;356(9244):1833-1836. DOI: 10.1016/s0140-6736(00)03243-8. https://doi.org/10.1016/S0140-6736(00)03243-8

3. T. Ishihara, K. Yamazaki, A. Araki, at al, “Exposure to Radiofrequency Electromagnetic Field in the HighFrequency Band and Cognitive Function in Children and Adolescents: A Literature Review,” Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 24, # 9179. doi: 10.3390/ijerph17249179.

4. P. Liang, Z. Li, J. Li, at all, “Impacts of complex electromagnetic radiation and low-frequency noise exposure conditions on the cognitive function of operators,” Front. Public Health, 2023, vol. 11, # 1138118. DOI: 10.3389/fpubh.2023.1138118.

5. International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to timevarying electric, magnetic, and electromagnetic fields (up to300GHz),” Health Phys., 1998, vol. 74, pp. 494–522. 

6. Y. Zhu, F. Gao, X. Yang, et. al. The effect of microwave emission from mobile phones on neuron survival in rat central nervous system. Prog. Electromagn. Res., 2008, vol. 82, pp. 287–98. https://doi.org/10.2528/PIER08022813

7. R. M. Hepacholi, “Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs,” Bioelectromagnetics, 1998, vol. 19, pp. 1–19. https://doi.org/10.1002/(SICI)1521-186X(1998)19:1<1::AID-BEM1>3.0.CO;2-5

8. R. Nylund, D. Leszczynski, “Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GS M900 radiation,” Proteomics, 2004, vol. 4, no. 5, pp. 1359–1365. DOI: 10.1002/pmic.200300773.

9. R. Sarimov, L. O. G. Malmgren, E. Markova, at all, “Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock,” IEEE Transactions on Plasma Science, 2004, vol. 32, no. 4, pp. 1600-1608. DOI: 10.1109/TPS.2004.832613.

10. M. Buttiglione, L. Roca, E. Montemurno, at all, “Radiofrequency radiation (900MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuro blastoma cells,” J. Cell Physiol., 2007, vol. 213, no. 3, pp. 759–767. DOI: 10.1002/jcp.21146.

11. Y. M. Moustafa, R. M. Moustafa, A. Belacy, at all, “Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes,” J. Pharm. Biomed. Anal., 2001, vol. 26, no. 4, pp. 605–608. DOI: 10.1016/s0731-7085(01)00492-7.

12. K. A Hossmann, D. M. Hermann, “Effects of Electromagnetic Radiation of Mobile Phones on the Central Nervous System,” Bioelectromagnetics, 2003, vol. 24, pp. 49-62. DOI: 10.1002/bem.10068.

13. J. E. Tattersall, I. R. Scott, S. J. Wood, et al, ”Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices,” Brain Res., 2001, vol. 904, no.1, pp. 43–53. DOI: 10.1016/s0006- 8993(01)02434-9.

14. R. C. Beason, P. Semm, “Responses of neurons to an amplitude modulated microwave stimulus,” Neurosci. Lett., 2002, vol. 333, no. 3, pp. 175–178. DOI: 10.1016/S0304-3940(02)00903-5.

15. J. Jin, Electromagnetic analysis and design in magnetic resonance imaging”, CRC Pres, #5.3.3, pp. 226ff, 1998.

16. R. W. P. King and T. T. Wu, “The imperfectly conducting cylindrical transmitting antenna, ”IEEE Trans. Antennas Propag., vol. 14, no. 5, pp. 524–534, Sep. 1966. https://doi.org/10.1109/TAP.1966.1138733

17. C. D. Taylor, W. H. Charles, and A. A. Eugene, “Resistive receiving and scattering antenna, ”IEEE Trans. Antennas Propag., vol. 15, no. 3, pp.371–376, May 1967. https://doi.org/10.1109/TAP.1967.1138944

18. R. W. P. King and T. T. Wu, “The imperfectly conducting cylindrical transmitting antenna: Numerical results,” IEEE Trans. Antennas Propag., vol. AP-14, no. 5, pp. 535–542, Sep. 1966. https://doi.org/10.1109/TAP.1966.1138753

19. A. Hirata et al.,“Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies, ”Phys .Med. Biol., vol. 57, no. 24, p. 8427, 2012. https://doi.org/10.1088/0031-9155/57/24/8427

20. A. Hirata, O. Fujiwara, T. Nagaoka, and S. Watanabe, “Estimation of whole-body average SAR in human models due to plane-wave exposure at resonance frequency, ”IEEE Trans. Electromagn. Compat., vol. 52, no. 1, pp. 41–48, Feb. 2010. https://doi.org/10.1109/TEMC.2009.2035613

21. K. Yanase and A. Hirata, “Effective resistance of grounded humans for whole-body averaged SAR estimation at resonance frequencies,” Prog. Electromagn. Res. B, vol. 35, pp. 15–27, 2011. https://doi.org/10.2528/PIERB11082511

22. B. Kibret, A. K. Teshome, and D.T. H. Lai, “Cylindrical antenna theory for the analysis of whole-body averaged specific absorption rate,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 5234–5229, Nov. 2015. https://doi.org/10.1109/TAP.2015.2478484

23. P. J. Dimbylow, “FDTD calculations of the whole-body average SAR in an anatomically realistic voxel model of the human body from 1MHz to 1GHz, ”Phys. Med. Biol., vol. 42, no. 3, pp. 479–490,1997. https://doi.org/10.1088/0031-9155/42/3/003

24. P.Dimbylow, “Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI, ”Phys. Med. Biol., vol. 50, no.17, p. 4053,2005. https://doi.org/10.1088/0031-9155/50/17/009

25. 5G, 4G, 3G Small Cell Tower Radiation Health Effects Science -https://ehtrust.org/5g-4g-3g-small-celltower-radiation-health-effects-science/. 

26. G Betta, D Capriglione, G Cerro, et al, “Measurements of Human Exposure to EMF from4G systems: some experimental issues in urban environments,” IOP Conf. Series: Materials Science and Engineering, 2022, vol. 1254, # 012014. DOI: 10.1088/1757-899X/1254/1/012014.

27. B. Levitt, H. Lai, A. Manville. “Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment,” Reviews on Environmental Health. Walter de Gruyter GmbH, 2021, vol. 37, no. 1, pp. 81–122. DOI: 10.1515/reveh-2021-0026.

28. D. B. Deaconescu, A. M. Buda, D. Vatamanu, and S. Miclaus, “The Dynamics of the Radiated Field Near a Mobile Phone Connected to a 4G or 5G Network,” Engineering, Technology & Applied Science Research, Feb. 2022, vol. 12, no. 1, pp. 8101–8106. DOI: DOI: 10.48084/etasr.4670.