SIMULATION AND RESEARCH OF THE SEPARATION OF TWO TYPES OF SUSPENDED PARTICLES IN A DISPERSED MIXTURE UNDER THE INFLUENCE OF AN ACOUSTIC FIELD

2024;
: 158-171
https://doi.org/10.23939/cds2024.02.158
Received: August 12, 2024
Revised: September 03, 2024
Accepted: September 30, 2024
1
Lviv Polytechnic National University

A mathematical model of the process of separating suspended microparticles in a dispersed mixture within a 2-branched channel of a microfluidic lab-chip under the influence of an acoustic field has been developed. The model is implemented in the environment of COMSOL Multiphysics, using thermoviscous acoustics, creeping flow, particle tracking in a fluid flow, and fluid-particle interaction multiphysics interfaces. Examples of separation of two types of microparticles suspended in a liquid, which differ in density and size, are shown. The scientific results obtained in this research form the theoretical basis for the development of lab-on-chip designs for separating microparticles suspended in a liquid using an acoustic field, as well as for the fabrication of prototypes of acoustophoretic lab-chips.

[1] van Voorthuizen, E., Zwijnenburg, A., van der Meer, W. & Temmink, H. “Biological black water treatment combined with membrane separation”. Water Res. 42, 4334–4340 (2008).

[2] Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S. & Manz, A. “Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip”. Science 261, 895–897 (1993).

[3] Sumi S, A. K. & Yoshida, K. Separation methods applicable to prostate cancer diagnosis and monitoring therapy. J. Chromatogr. B: Biomed. Sci. Appl. 764, 445–455 (2001).

[4] Wu, M. et al. “Acoustofluidic separation of cells and particles”. Microsyst. Nanoeng. 5, 32 (2019).

[5] Scott, L. & Friedman, F. J. R. “Isolation and culture of hepatic lipocytes, Kupffer ceils, and sinusoidal endothelial cells by density gradient centrifugation with Stractan”. Anal. Biochem. 161, 207–218 (1987). Fan et al. Microsystems & Nanoengineering (2022) 8:94 Page 14 of 16

[6] Blackburn, Cd. W., Patel, P. D. & Gibbs, P. A. “Separation and detection of salmonellae using immunomagnetic particles. Biofouling” 5, 143–155 (1991).

[7] Bhagat, A. A. S. et al. “Microfluidics for cell separation”. Med. Biol. Eng. Comput. 48, 999–1014 (2010).

[8] Gossett, D. R. et al. “Label-free cell separation and sorting in microfluidic systems”. Anal. Bioanal. Chem. 397, 3249–3267 (2010).

[9] Wyatt Shields Iv, C., Reyes, C. D. & López, G. P. “Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation”. Lab Chip 15, 1230–1249 (2015).

[10] Fan Y, Wang X, Ren J, Lin F, Wu J. “Recent advances in acoustofluidic separation technology in biology” Microsystems & Nanoengineering. (2022)

[11] Connacher, W. et al. “Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications”. Lab Chip 18, 1952–1996 (2018).

[12] Riley, N. “Steady streaming”. Annu. Rev. Fluid Mech. 33, 43–65 (2001).

[13] Skowronek, V., Rambach, R. W., Schmid, L., Haase, K. & Franke, T. “Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: Size and frequency dependence”. Anal. Chem. 85, 9955–9959 (2013).

[14] Whitworth, G., Grundy, M. A. & Coakley, W. T. “Transport and harvesting of suspended particles using modulated ultrasound”. Ultrasonics 29, 439–444 (1991).

[15] Mohapatra, A. R., Sepehrirahnama, S. & Lim, K. M. “Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit”. Phys. Rev. E 97, 053105 (2018).

[16] Ma, Z., Collins, D. J. & Ai, Y. “Single-actuator bandpass microparticle filtration via traveling surface acoustic waves”. Colloid Interface Sci. Commun. 16, 6–9 (2017)

[17] Simon, G. et al. “Bandpass sorting of heterogeneous cells using a single surface acoustic wave transducer pair”. Biomicrofluidics 15, 014105 (2021).

[18] Liu, G. et al. “Separation of particles using the focused acoustic sorting chip based on the wettability treatment”. AIP Adv. https://doi.org/10.1063/5.0042866 (2021).

[19] Xie, Y. et al. “Acoustic cell separation based on density and mechanical properties”. J. Biomech. Eng. 142, 031005 (2020)

[20] Bai, X. et al. “Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming”. Lab Chip 21, 2721–2729 (2021)

[21] Ahmed, H., Destgeer, G., Park, J., Afzal, M. & Sung, H. J. “Sheathless focusing and separation of microparticles using tilted-angle traveling surface acoustic waves”. Anal. Chem. 90, 8546–8552

[22] Liu, G. et al. “Continuous separation of particles with different densities based on standing surface acoustic waves”. Sensors Actuators A: Phys. https://doi.org/10.1016/j.sna.2022.113589 (2022)

[23] Bruus H. “Theoretical Microfluidics”, Oxford University Press, 2010.