Mathematical Model of a Synchronous Machine With Permanent Magnets Based on the Method of Average Voltages in the Integration Step

2025;
: pp. 39 - 51
1
Lviv Polytechnic National University, Department of Electromechatronics and Computerized Electromechanical Systems
2
Lviv Polytechnic National University, Department of Electromechatronics and Computerized Electromechanical Systems

Synchronous machines with permanent magnets (SMPM) have become widely used in modern electric drives and generator sets due to their combination of high energy efficiency, compact size and reliability. They are characterised by increased specific power, no losses in excitation circuits and reduced energy consumption. At the same time, the fixed magnetic flux created by permanent magnets imposes specific requirements on mathematical modelling, especially when developing control algorithms and researching operating modes.
Models in phase or orthogonal coordinates are traditionally used to analyse such machines. Simplified models in rectangular coordinates allow for quick calculations, but they are unable to reflect the behaviour of the machine in asymmetrical modes, different winding connection schemes, or in multiphase configurations. This significantly reduces their suitability in complex energy and electromechanical systems.
This paper presents a mathematical model of a synchronous machine with surface-mounted permanent magnets, implemented in phase coordinates. The model was constructed using the method of average voltages in the integration step, which ensures high numerical stability of calculations and increases the numerical integration step, allowing for faster calculations. The proposed approach expands the possibilities of analysis: it allows considering not only symmetric but also asymmetric modes, as well as implementing various load connection schemes.
A comprehensive verification of the proposed model was carried out: on the one hand, by comparing the results of mathematical modelling for generator operation mode with analytical calculations of the external static characteristics of a synchronous machine with permanent magnets, and on the other hand, using a similar model implemented in the Matlab/Simulink environment to study the behaviour of the machine in transient modes. The results obtained confirmed the adequacy of the proposed model for both steady-state and dynamic modes of operation.

  1. Elsherbiny, H.; Szamel, L.; Ahmed, M.K.; Elwany, M.A. High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis. Mathematics 2022, 10, 3880. https://doi.org/ 10.3390/math10203880.
  2. Yuan M, Meng Y, Qi X, Li X, Zhang N (2025) Research on simulation of permanent magnet synchronous motor in full speed range. PLoS One 20(4): e0320786. https://doi. org/10.1371/journal.pone.0320786.
  3. H. May, R. Paáka, P. Paplicki, S. Szkolny, and W.-R. Canders, “Modified concept of permanent magnet excited synchronous machines with improved high-speed features”, Arch. Electr. Eng., Jan. 2011, vol. 60, no. 4, pp. 531–540.
  4. Szalay, I.; Fodor, D.; Enisz, K.; Medve, H. Permanent Magnet Synchronous Motor Model Extension for High- Frequency Signal Injection-Based Sensorless Magnet Polarity Detection. Energies 2022, 15, 1131. https://doi.org/10.3390/ en15031131
  5. R. Cousseau, R. Romary, R. Pusca and E. Semail, "Two-Slot Coil Pitch For Five-Phase Integrated Permanent Magnet Synchronous Machine," 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020, pp. 1615-1620, doi: 10.1109/ICEM49940.2020.9271037.
  6. B. Sen and J. Wang, “Stationary Frame Fault-Tolerant Current Control of Polyphase Permanent-Magnet Machines Under,” vol. 31, no. 7, 2016, pp.4684–4696.
  7. Kutsyk, A.; Semeniuk, M.; Korkosz, M.; Podskarbi, G. Diagnosis of the Static Excitation Systems of Synchronous Generators with the Use of Hardware-In-the-Loop Technologies. Energies 2021, 14, 6937. https://doi.org/10.3390/en14216937
  8. Naama, Fatima & Zegaoui, Abdallah & Benyssaad, Yssaad & Kessaissia, Fatma & Abdelkader, Djahbar & Aillerie, M.. (2019). Model and Simulation of a Wind Turbine and its Associated Permanent Magnet Synchronous Generator. Energy Procedia. 157. 737-745. 10.1016/j.egypro.2018.11.239.
  9. Lee, Sung-Won & Chun, Kwan-Ho. (2019). Adaptive Sliding Mode Control for PMSG Wind Turbine Systems. Energies. 12. 595. 10.3390/en12040595.
  10. Louar, F. & Ouari, Ahmed & Omeiri, Amar & Djellad, Abdelhak & Bouras, Lakhdar. (2016). Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system. Frontiers in Energy. 10. 10.1007/s11708-016-0410-1.
  11. Ion, Catalin & Calin, Marius & Peter, Ioan. (2023). Design of a 3 kW СМПМ with Super Premium Efficiency. Energies. 16. 498. 10.3390/en16010498.
  12. Tobías, Agustín & Peña, Rafael & Morales-Saldaña, J.A. & Gutierrez-Urueta, Geydy. (2015). Modeling of a Wind Turbine with a Permanent Magnet Synchronous Generator for Real Time Simulations. 10.1109/ROPEC.2015.7395143.
  13. Gautam, Kiran & Sankaranarayanan, V.. (2014). Sliding Mode Control of Surface Mounted Permanent Magnet Synchronous Generator. IFAC Proceedings Volumes (IFAC-PapersOnline). 3. 1034-1038. 10.3182/20140313- 3-IN-3024.00164.
  14. К. Горяченко, В. Стецюк, С. Горяченко, та А. Лисий, “Моделювання та випробування синхронних двигунів з постійними магнітами,” Вісник Хмельницького національного університету, серія "Технічні науки", 2023, DOI: 10.31891/2307-5732-2023-323-4-112-117.
  15. O. Plakhtyna, A. Kutsyk, M. Semeniuk, "Real-Time Models of Electromechanical Power Systems, Based on the Method of Average Voltages in Integration Step and Their Computer Application",. Energies, Vol.13, 2263, 2020. https://doi.org/10.3390/en13092263
  16. Куцик А.С., Семенюк М.Б., Йовбак В.Д. Застосування методу середньокрокових напруг для математичного моделювання електромеханічних систем з синхронною машиною. Вісник НУ «Львівська політехніка» «Електроенергетичні та електромеханічні системи», №671, 2010, с. 45-50.
  17. L. Romeral, J. C. Urresty, J. -R. Riba Ruiz and A. Garcia Espinosa, "Modeling of Surface-Mounted Permanent Magnet Synchronous Motors With Stator Winding Interturn Faults," in IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1576-1585, May 2011, doi: 10.1109/TIE.2010.2062480.
  18. S. Alves de Souza and W. Issamu Suemitsu, "Five-Phase Permanent-Magnet Synchronous Motor," in IEEE Latin America Transactions, vol. 15, no. 4, pp. 639-645, April 2017, doi: 10.1109/TLA.2017.7896349.
  19. Ezeonye, Chinonso & Osuji, Uzoma & Oputa, Osita & Obi, Patrick. (2025). Linearised Model of Surface- Mounted Permanent Magnet Synchronous Motor for Stability and Speed Enhancement. 5. 2295-2307. 10.5281/zenodo.15455620.
  20. O. Plakhtyna, A. Kutsyk, M. Semeniuk and O. Kuznyetsov, "Object-oriented program environment for electromechanical systems analysis based on the method of average voltages on integration step," 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE), Kutna Hora, 2017, pp. 1-4.