In many cases, visual and optical methods can be used in defectoscopy for different materials and products. With the development of microprocessor components and significant expansion of usage of computer technologies and image processing and analysis techniques in different areas, the use of visual and optical methods in defectoscopy for production and research purposes is rapidly developing.
In this paper, the author proposes a computer vision system for experiments and research in the area of studying defects of materials and products. The system uses modern methods of image processing and object identification based on their images. The system allows to install the object so that it can be rotated horizontally, take high-quality images of the object using a digital video camera, pre- process images to enhance image quality using a local computing module, transfer images to the main computing module to identify defects and make decisions about rejection of the material or product.
To install and rotate the material or product, the author uses the stepper motor 17HS4401 and a horizontal platform fixed on the vertical axis. The stepper motor is controlled using Microstep Driver TB6600 and a local computing module based on a microcontroller with an ARM Cortex-M7 core. The video stream is recorded using a USB microscope video camera which provides sufficiently high image resolution allowing to find defects on the object surface of size 50 micron and larger. Rotation speed can be controlled using a local computing module. The input data for the local computing module can be provided in the form of a video stream or a sequence of images. The local computing module has an LCD screen based on the ВС1602А indicator, programmable LEDs, a keyboard to select operating modes for the stepper motor, a USB port to connect the microscope video camera and an SWD port to program the Flash memory and debug the firmware in real time. Original images or the images after quality enhancement are passed to the main computing module using the SPI interface.
The author has developed software for the local computing module to control the stepper motor, record a video stream or series of images of the object area with possible defects, quality enhancement and passing the video stream or images to the main computing module for further processing and analysis. The results can be used in scientific research and in development of automated systems for non-destructive defectoscopy for materials and end products.
- Nakaz 21.06.2016 № 184. URL: https://zakon.rada.gov.ua/rada/show/v0184774-16#Text (accessed: 3 October 2022).
- Vizualno-optychnyi kontrol. [Elektronnyi resurs]. // URL: http://ua.tuev-dieks.com/ – Rezhym dostupu do resursu: http://ua.tuev-dieks.com/services/technical-diagnosis/methods-of-survey/vizualno-opticheskij-kontrol/ (accessed: 3 October 2022).
- DSTU EN ISO 19232-4:2016. Kontrol neruinivnyi. Yakist zobrazhennia na renthenivskykh znimkakh.
- DSTU ISO 3057:2016. Kontrol neruinivnyi. Metalohrafichnyi metodreplik dlia obstezhennia poverkhni.
- DSTU ISO 3058:2016. Kontrol neruinivnyi. Dopomizhni zasoby dlia vizualnoho kontroliu.
- DSTU 2498-94. Osnovni normy vzaiemozaminnosti. Dopusky formy ta roztashuvannia poverkhon. Terminy ta vyznachennia.
- Klasyfikatsiia vidkhylen i dopuskiv formy ta roztashuvannia poverkhon. [Elektronnyi resurs]. – URL:: https://buklib.net/books/36030/ (Accessed: 3 October 2022).
- Tochnist heometrychnykh parametriv. [Elektronnyi resurs]. – URL:: https://naurok.com.ua/konspekt- uroku-vstv-za-temoyu-tochnist-geometrichnih-parametriv-177808.html (accessed: 3 October 2022).
- Varga B. The effect of the point sampling to the result of coordinate measuring of free-form surface /B. Varga; B. Mikó // Rizannia ta instrumenty v tekhnolohichnykh systemakh = Cutting & tools in technological systems : mizhnar. nauk.-tekhn. zb. Kharkiv : NTU "KhPI", 2022. Vyp. 96. – S. 89–98.
- Zenkin M. A., Nazarenko A. S. Suchasni optychni metody kontroliu shorstkosti vidpovidalnykh detalei mashyn. Visnyk Inzhenernoi akademii Ukrainy. 2014. No 2. S. 220–224.
- Matematychni problemy mekhaniky neodnoridnykh struktur / Pid zah. red.O. Lukovskoho, H. S. Kita,R. M. Kushnira. Lviv: Instytut prykladnykh problem mekhaniky i matematyky im. Ya. S. Pidstryhacha NAN Ukrainy, 2014. – 412 s.
- Bozhuk A. M., Denbnovetskyi S. V. Elektronna systema tekhnichnoho zoru dlia defektoskopii pryvyrobnytstvi plat. Materialy XIII-yi naukovo-praktychnoi konferentsii «Perspektyvni napriamky suchasnoi elektroniky», KPI im. Ihoria Sikorskoho, FEL, 4 kvitnia 2019 r.,s. 100–104.
- Havryliv D., Ivakhiv O. and Semenchenko M. "Defect detection on the surface of the technical ceramics using image processing and deep learning algorithms", 2020 21st International Conference on Research and Education in Mechatronics (REM), 2020. Pp. 1–3. DOI: 10.1109/REM49740.2020.9313910.
- Havryliv D. V., Semenchenko M. O. Vykorystannia hlybynnoho navchannia ta mashynnoho zoru dlia vyiavlennia defektiv na poverkhni keramichnykh dyskiv // Technical using of measurement-2020 : tezy dopovidei VI Vseukrainskoi naukovo-tekhnichnoi konferentsii molodykh vchenykh u tsaryni informatsiino-vymiriuvalnykh tekhnolohii ta metrolohii, 4–7 liutoho 2020 r., Slavske. 2020. – Pp. 39–41.
- Profesiini kamery do mikroskopiv Microtech. [Elektronnyi resurs]. – URL: http:microtech.ua/ img/cms/price50.pdf (accessed: 3 October 2022).
- Tsyfrova kamera SIGETA M3CMOS 8500 8.5Mp USB3.0. [Elektronnyi resurs].– URL: https:// sigeta.com.ua/products/tsyfrova-kamera-sigeta-m3cmos-8500-8-5-mp-dlia- mikroskopa.html (accessed: 3 October 2022).
- Mikroskop-elektronnyj-tsifrovoj. [Elektronnyi resurs]. – URL: https://mega-shopua.com.ua/ua/ p838304224-mikroskop-elektronnyj-tsifrovoj.html (accessed: 3 October 2022)
- 17HS4401 Datasheet. Phase Hybrid Stepper Motor. [Elektronnyi resurs]. – URL: https://www. datasheet4u.com/datasheet- pdf/MotionKing/17HS4401 /pdf.php?id=928661 (accessed: 3 October 2022).
- Microstep Driver TB6600. [Elektronnyi resurs]. URL: https://bulkman3d.com/wp- content/uploads/2019/06/TB6600-Stepper-Motor-Driver-BM3D-v1.1.pdf (accessed: 3 October 2022).
- STM32F767ZI. Datasheet. [Elektronnyi resurs]. URL: https://www.st.com/en/microcontrollers- microprocessors/stm32f767zi.html (accessed: 3 October 2022).
- Intel® Neural Compute Stick 2 (Intel® NCS2). [Elektronnyi resurs]. URL: https://www.intel. com/content/www/us/en/developer/tools/neural-compute-stick/overview.html (accessed: 3 October 2022).