Measuring and controlling the temperature of the environment in the room is one of the most important measurements that a person makes every day. Temperature measurements are used to control objects where it is important to constantly maintain a certain temperature regime, or where sharp temperature changes can affect the efficiency of the final result of the operation of this object. Remote control of these indicators will allow the management to quickly intervene in the work of the enterprise to eliminate problems that may lead to a loss of the object's productivity.
This article considers the implementation of a device for measuring temperature based on the STM32F746ZGTx microcontroller. The HTU21D sensor is used to receive temperature The FreeRtos operating system will also be used to implement multitasking of the device.
data, which can receive data on both the ambient temperature and its humidity. The characteristics of the sensor are as follows: temperature measurement range from -40 °C to +125 °C; relative humidity measurement range 0-100%, temperature error Δ0.4 °C; humidity error Δ3%; supply voltage from 1.5 to 3.6V; I²C communication protocol, up to 400 kHz.
An LCD display is used to display data to the user, which also uses the I²C communication protocol and a 5V power supply. The FreeRtos operating system will also be used to implement multitasking of the device.
- Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009, 9, 6869–6896. DOI: https://doi.org/10.3390/s90906869.
- Spencer, B.; Al-Obeidat, F. Temperature forecasts with stable accuracy in a smart home. Procedia Comput. Sci. 2016, 83, 726–733. DOI: https://doi.org/10.1016/j.procs.2016.04.160
- Chen, W.; Dols, S.; Oetomo, S.B.; Feijs, L. Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. In Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 10–12 September 2010; pp. 188–194. DOI: https://doi.org/10.1145/2221924.2221960
- Goumopoulos, C.; O’Flynn, B.; Kameas, A. Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 2014, 105, 20–33. DOI: https://doi.org/10.1016/j.compag.2014.03.012.
- Hans, V.H. High-precision measurement of absolute temperatures using thermistors. Proc. Estonian Acad. Sci. Eng. 2007, 13, 379–383. DOI:10.1109/ISIE.1992.279626
- Gowen, A.A.; Tiwari, B.K.; Cullen, P.J.; McDonnell, K.; O’Donnell, C.P. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 2010, 21, 190–200. DOI: https://doi.org/10.1016/j.tifs.2009.12.002
- Rudtsch, S.; von Rohden, C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement 2015, 76, 1–6. DOI: https://doi.org/10.1016/j.measurement.2015.07.028.
- Rana, K.P.S.; Mittra, N.; Pramanik, N.; Dwivedi, P.; Mahajan, P. A virtual instrumentation approach to neural network-based thermistor linearization on field programmable gate array. Exp. Tech. 2015, 39, 23–30. DOI: https://doi.org/10.1111/ext.12011.
- Xie, W.; Yang, M.; Cheng, Y.; Li, D.; Zhang, Y.; Zhuang, Z. Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face. Opt. Fiber Technol. 2014, 20, 314–319. journal ISSN: 1068-5200. DOI: https://doi.org/10.1016/j.yofte.2014.03.008.
- Moreno, J.C.; Bueno, L.; Pons, J.L.; Baydal-Bertomeu, J.M.; Belda-Lois, J.M.; Prat, J.M.; Barberá, R. Wearable Robot Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470512944. DOI: https://doi.org/10.1002/9780470987667.ch6.
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295. DOI: https://doi.org/10.1016/j.sna.2008.01.017.
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M.J. A Polymer Optical Fiber Temperature Sensor Based on Material Features. Sensors 2018, 18, 301. DOI: https://doi.org/10.3390/s18010301.
- Li, C.; Ning, T.; Zhang, C.; Li, J.; Wen, X.; Pei, L.; Gao, X.; Lin, H. Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating. Sens. Actuators A Phys. 2016, 245, 49–53. DOI: 10.1016/j.sna.2016.04.046.
- Churenkov, A.V. Resonant micromechanical fiber optic sensor of relative humidity. Measurement 2014, 55, 33–38. DOI: https://doi.org/10.1016/j.measurement.2014.04.032.
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Fiber optic humidity sensor based on the graphene oxide/PVA composite film. Opt. Commun. 2016, 372, 229–234. DOI: https://doi.org/10.1016/j.optcom.2016.04.030
- Ascorbe, J.; Corres, J.M.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding- etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. DOI: https://doi.org/10.1016/j.snb.2016.04.045.
- Berruti, G.; Consales, M.; Cutolo, A.; Cusano, A.; Breglio, G.; Buontempo, S.; Petagna, P.; Giordano, M. Radiation hard humidity sensors for high energy physics applications using polymide-coated Fiber Bragg Gratings sensors. Sens. Acuators B Chem. 2013, 177, 94–102. DOI: https://doi.org/10.1088/1748-0221/9/03/C03040
- Zhu, T.; Ke, T.; Rao, Y.; Chiang, K.S. Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685. DOI: https://doi.org/10.3390/s22155722.
- Liu, Y.; Peng, W.; Liang, Y.; Zhang, X.; Zhou, X.; Pan, L. Fiber-optic Mach-Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 2013, 300, 194–198. DOI: https://doi.org/10.1016/j.optcom.2013.02.054.
- Rogério da Silva Marques, R.; Prado, A.R.; da Costa Antunes, P.F.; de Brito André, P.S.; Ribeiro, M.R.N.; Frizera-Neto, A.; Pontes, M.J. Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors 2015, 15, 30693–30703. DOI: https://doi.org/10.3390/s151229811.
- Tapetado, A.; Pinzon, P.J.; Zubia, J.; Vazquez, C. Polymer Optical Fiber Temperature Sensor With Dual- Wavelength Compensation of Power Fluctuations. J. Lightwave Technol. 2015, 33, 2716–2723. DOI: https://doi.org/10.1109/JLT.2015.2408368.