The article is devoted to modeling and optimization of the rectification unit for the separation of the propylene-propane mixture.
Propene (often known as propylene) is a very important building block for a large number of chemicals, including the addition polymer, poly(propene).
The principal uses of propene are to produce: propenal (acrolein) which is oxidized to propenoic acid (acrylic acid) which, in turn, is used to make acrylic polymers; propenonitrile (acrylonitrile) which is the monomer for poly(propenonitrile); cumene ((1-methylethyl)benzene or isopropylbenzene) which is then used to make phenol and propanone (acetone); epoxypropane (propylene oxide) which is used to make diols for the manufacture of polyurethanes and solvent; butanal (butrylaldehyde) and hence butanol, used as a solvent for surface coatings.
Propylene is obtained by rectification. In chemical technology, the process of rectification for power consumption is extremely uneconomical. Creating optimal conditions for the process and improving the efficiency of separation of binary mixtures is relevant.
In this paper, the equilibrium ratio of the vapor-liquid phase and the enthalpy of phases are calculated by using the equation of state Soave-Redlich-Kwong (SRK).
The Soave-Redlich-Kwong equation is very effective for predicting K-values for hydrocarbon systems at medium to high pressures. Good results have been obtained by using this method for demethanizers, de-ethanizers, depropanizers, debutanizers, wellhead processes, etc.
The compressibilities and mixture fugacity coefficients for both vapor and liquid phases are derived from the Soave-Redlich-Kwong equation of state. The binary interaction parameters are included for several hydrocarbons and non-condensible gases. User supplied data is usually not required for this method. However, the binary interaction parameters can be modified or supplied by editing them in the CHEMCAD databases.
The alpha function used by SRK gives unrealistic results for light gases at high reduced temperatures. Authors [12 – 14] developed an alternative alpha function to the one above for temperatures exceeding critical.
The equation Soave-Redlich-Kwong (SRK) of state binary interaction parameter may be specified as a temperature dependent equation. In this paper, binary interaction parameters extend cubic equations of state beyond systems with only modest deviation from ideal gas.
On the basis of the Soave-Redlich-Kwong model, a paramagnetic phase diagram for propylene and a diagram of the dependence of the boiling temperature and propylene condensation on the composition of the phases were constructed in ChemCAD's universal simulation system.
Flow characteristics and technological parameters of the column are obtained. The structural characteristics of the column and its elements are modeled. The price of equipment is calculated in money terms. The optimization problem is solved. Maximization of column productivity by distillate is modeled. The increase in the yield of commodity propylene at 138.78 kg / h is the result of optimization. . The calculated optimization criterion is 97%. The characteristics of the optimized column are obtained in graphical and tabular form.
1. Sofieva Yu. N., Abramov K. V. Primenenie paketa modeliruyuschihprogrammChemCAD v uchebno-trenirovochnyih kompleksah dlya izucheniya sistem avtomatizatsii rektifikatsionnyih ustanovok // Inzhenernyiy vestnik Dona, 2012, №1 URL: ivdon. ru/ru/magazine/archive/n1y2012/619.
2. Abramov K. V. Metodika opredeleniya koeffitsientov PID-kontrollera pri modelirovanii avtomatizirovannyih sistem upravleniya rektifikatsionnoy kolonnoy s primeneniem paketa ChemCAD // Inzhenernyiy vestnik Dona, 2011, № 2 URL: ivdon. ru/ru/magazine/archive/n2y2011/444.
3. Volkov D. N., Vilkov G. G. Proektirovanie slozhnyih rektifikatsionnyih kolonn na osnove entropiynogo metoda modelirovaniya. Inzhenernyiy vestnik Dona, № 1 (2015) ivdon. ru/ru/magazine/archive/n1y2015/2748.
4. Volkov D. N., Vilkov G. G. Entropiynoe modelirovanie slozhnyih rektifikatsionnyih kolonn // Nauchno-tehnicheskiy vestnik Povolzhya. - 2013. - № 5. - C. 134-139.
5. Rapoport E. Ya. Analiz i sintez sistem avtomaticheskogo upravleniya s raspredelennyimi parametrami: ucheb. posobie / E. Ya. Rapoport. - M.: Vyissh. shk., 2005. - 292 s.
6. Belobrova E. V. Avtomaticheskoe upravlenie teplomassoobmennyimi protsessami s podvizhnyimi raspredelennyimi reguliruyuschimi vozdeystviyami / E. V. Belobrova, A. R. Sheykus, V. I. Korsun // Vostochno-Evropeyskiy zhurnal peredovyih tehnologiy. - 2014. - № 5/2 (71). - S. 51-55.
7. Levchuk I. L. Sposob upravleniya protsessom rektifikatsii s pomoschyu raspredelennyih upravlyayuschih vozdeystviy / I. L. Levchuk, A. R. Sheykus, V. Ya. Trishkin // VIsnik NTU "HPI". SerIya:NovI rIshennya v suchasnih tehnologIyah. - 2015. - № 14 (1123). - S. 100-105.
8. Komissarov Yu. A. Matematicheskoe modelirovanie pri raschete parozhidkostnogo ravnovesiya mnogokomponentnyih sistem / Yu. A. Komissarov, Dam KuangShang // Vestnik AGTU. Seriya: Upravlenie, vyichislitelnaya tehnika i informatika. - 2011. - № 1. - S. 43-50.
9. Tarhov K. Yu. Osobennosti vliyaniya otnositelnoy letuchesti komponentov na raschet i strukturu diagramm fazovogo ravnovesiya zhidkost-par mnogokomponentnyih smesey / K. Yu. Tarhov, L. A. Serafimov, A. M. Andreeva // Vestnik MITHT. - 2011. - T. 6. - № 1. - S. 61-73.
10. Sheykus A. R., Levchuk I. L., Trishkin V. Ya., Korsun V. I. Modelirovanie parozhidkostnogo ravnovesiya pri podvizhnom upravlenii protsessami rektifikatsii // VIsnik Nats. tehn. un-tu "HPI". - 2016. - № 44 (1216). - S. 87-100.
11. Matematicheskoe modelirovanie himiko-tehnologicheskih sistem s ispolzovaniem programmyi ChemCad: uchebno-metodicheskoe posobie / Kazan. gos. tehnol. un-t. Sost.: N. N. Ziyatdinov, T. V. Lapteva, D. A. Ryizhov. - Kazan, 2008. - 160 s.
12. Neau E. The Soave, Twu and Boston-Mathiasalpha functions in cubic equations of state. P. II. Modeling of thermodynamic properties of purecompounds / E. Neau, O. Hermandez-Garduza // Fluid phase equilibria. - 2009. - Vol. 276. - P. 156-164.
https://doi.org/10.1016/j.fluid.2008.10.010
13. Lemmon E. W. NIST standard reference database23: reference fluid thermodynamic and transportproperties - REFPROP, Version 9.1: standardreference data program / E. W. Lemmon, M. L. Huber, M. O. McLinden; National Instituteof Standards and Technology. - Gaithersburg, 2013.
14. Gerasimov A. A., Aleksandrov I. S., Grigorev B. A., Lyugay D. V. Matematicheskoe modelirovanie plastovyih sistem, uravneniya sostoyaniyai fazovyie ravnovesiya plastovyih flyuidov i ih komponentov // Nauchno-tehnicheskiy sbornik "Vesti gazovoy nauki. Aktualnyie voprosyi issledovaniy plastovyih sistem mestorozhdeniy uglevodorodov". - 2015. - № 4 (24). - S. 5-13.