The production of bio-coal briquettes gives an opportunity to utilize low grade coal as well as the great amount of agricultural residues, to increase the calorific value of obtained briquettes and to improve their chemical and physical properties. The present study is focused on developing the technological scheme which gives an opportunity to reduce the energy consumption in production line of composite fuel as well as to produce bio-coal briquettes with good mechanical integrity. The effect of the fixed bed length on the kinetic during the filtration drying of coal and sunflower biomass has been examined. Optimal parameters for the process implementation were identified for sunflower biomass: temperature of the heat agent 353К, velocity of the heat agent 1,66m/s, length of the fixed bed 120·10-3m and for the coal: temperature of the heat agent 318 К; pressure drop 5886 Pa, length of the fixed bed 75.10-3m. Organic binder has been obtained from woody biomass using torrefaction process. Technological scheme has been developed which gives an opportunity to reduce the energy consumption in production line by using filtration dryers for coal and sunflower biomass drying as well as to produce bio-coal briquettes with good mechanical integrity by using organic binder along with pretreated biomass.
1. Heletii Z., Roskolupa A., Mysak Y. and Kravets T. (2002). Ekonomichna efektyvnist vykorystannia nyzkoiakisnoho tverdoho palyva zakhidnoho rehionu Ukrainy dlia vyrobnytstva elektroenerhii. Visnyk NU "Lvivska Politekhnika", 460, 123-127.
2. Protsyshyn B., Vorobiov L., Lokh Y. and Pavliuk S. (2006). Vyrobnytstvo kompozytsiinykh palyv z vidkhodiv promyslovosti ta silskoho hospodarstva. Prom. teplotekhnyka, 28(2), 46-50.
3. Ikelle, I. and Oga, S. (2014). Determination of Heating Ability of Coal and Corn Cob Briquettes. IOSR Journal of Applied Chemistry (IOSR-JAC), 7(2), 77-82.
https://doi.org/10.9790/5736-07217782
4. Jones J., Kubacki M., Kubica K., Ross A.B., Williams A. (2005), "Devolatilisation Characteristics of Coal and Biomass Blends", Journal of Analytical and Applied Pyrolysis, 74, 502-511.
https://doi.org/10.1016/j.jaap.2004.11.018
5. Snezhkin, Y., Korinchuk, D., Vorobiov, L. and Kharin, O. (2006). Rozrobka enerhoefektyvnoho palyva na torfianii osnovi. Prom. Teplotechn, 28, 41-45.
6. Kindzera D., Atamanyuk V., Pelekh M., Hosovskyi R. (2019). Chemistry, Technology and Application of Substances, 2(1), 110-114.
https://doi.org/10.23939/ctas2019.01.110
7. Kindzera D., Atamanyuk V. and Hosovskyi R. (2015). Vyznachennia optymalnykh parametriv sushinnia podribnenykh stebel soniashnyka dlia vyrobnytstva palyvnykh bryketiv. Visnyk Odesa Nats. Acad, 42, 194-198.
8. Kindzera D., Hosovkyi R., Atamanyuk V. (2019). Intensyfikatsiia vnutrishnodyfuziinoho masoperenesennia ta nasychennia teplovoho ahentu volohoiu dlia pidvyshchennia enerhoefektyvnosti sushinnia roslynnoi biomasy. Visnyk Odesa Nats. Acad, 1(83), 103 - 110.
9. Adeleke A., Odusote J., Lasode O., Ikubanni P., Malathi M., Paswan D. (2019). Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon, 5, 1-7.
https://doi.org/10.1016/j.heliyon.2019.e02160
10. Adeleke A., Odusote J., Lasode O., Ikubanni P., Malathi M., Paswan D. (2019). Mild pyrolytic treatment of gmelina arborea for optimum energetic yields. Cogent Eng., 6(1), 1-13.
https://doi.org/10.1080/23311916.2019.1593073
11. Odusote J., Adeleke A., Lasode O., Malathi M., Paswan D. (2019). Thermal and compositional properties of treated Tectona grandis. Biomass conversion and biorefinery, 3, 511-519.
https://doi.org/10.1007/s13399-019-00398-1
12. Krizan, P., Soos, L. and Vukelic, D. (2009). A Study of Impact Technological Parameters on the Briquetting Process. Facta Universitatis ser.: Working Living Environ, 6, 39-47.
13. Chaiklangmuang S., Supa S and Kaewpet P. (2008). Development of Fuel Briquettes from Biomass-Lignite Blends. Chiang Mai J. Sci., 35(1), 43-50.