The purpose of this work was to study the process of adsorption of phosphate on natural and synthesized sorbents, such as aluminosilicates. The sorption properties of natural zeolite for phosphate under static and dynamic conditions were investigated. The zeolite on the basis of the coal fly ash of Dobrotvorskaya heat power plant was synthesized and modified. The equilibrium values of adsorption capacity were determined, and the corresponding isotherms were constructed at a temperature of 20° C. The kinetics of adsorption under mechanical mixing conditions was investigated. The limitation stages of the adsorption process was established. The speed, power and pressure diagrams of the apartheid were calculated and constructed.
1. Lin, S., Man, Y. B., Chow, K. L., Zheng, C., & Wong, M. H. (2020). Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 50(2), 105-134..
https://doi.org/10.1080/10643389.2019.1619377
2. Deng, H., Wei, R., Luo, W., Hu, L., Li, B., & Shi, H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658
https://doi.org/10.1016/j.envpol.2019.113658
3. Ramesh, V., & George, J. (2020). Carbon and Nutrient Sequestration Potential of Coal-Based Fly Ash Zeolites. In Circular Economy and Fly Ash Management (pp. 47-55). Springer, Singapore.
https://doi.org/10.1007/978-981-15-0014-5_4
4. Coignet, P. A., Kratzer, D. W., Kulkarni, S. S., & Sanders Jr, E. S. (2020). U.S. Patent No. 10,525,400. Washington, DC: U.S. Patent and Trademark Office.
5. Zeng, X., Xu, Y., Zhang, B., Luo, G., Sun, P., Zou, R., & Yao, H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503-512.
https://doi.org/10.1016/j.cej.2016.10.047
6. Akpomie, K. G., Onyeabor, C. F., Ezeofor, C. C., Ani, J. U., & Eze, S. I. (2019). Natural aluminosilicate clay obtained from South-Eastern Nigeria as potential sorbent for oil spill remediation. Journal of African Earth Sciences, 155, 118-123.
https://doi.org/10.1016/j.jafrearsci.2019.04.013
7. Zagklis, D. P., & Paraskeva, C. A. (2020). Preliminary design of a phenols purification plant. Journal of Chemical Technology & Biotechnology, 95(2), 373-383.
https://doi.org/10.1002/jctb.5930
8 Sabadash, V., Gumnitsky, J., Hyvlyud, A. (2016) Mechanism of phosphates sorption by zeolites depending on degree of their substitution for potassium ions.Chemistry & Chemical Technology; 10.2: 235-240.
https://doi.org/10.23939/chcht10.02.235
9. Kalvachev, Y., Zgureva, D., Boycheva, S., Barbov, B., & Petrova, N. (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124(1), 101-106.
https://doi.org/10.1007/s10973-015-5148-1
10. Lazarova, K., Boycheva, S., Vasileva, M., Zgureva, D., Georgieva, B., & Babeva, T. (2019, March). Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. In Journal of Physics: Conference Series (Vol. 1186, No. 1, p. 012024). IOP Publishing.
https://doi.org/10.1088/1742-6596/1186/1/012024
11. Karanac, M., Đolić, M., Veličković, Z., Kapidžić, A., Ivanovski, V., Mitrić, M., & Marinković, A. (2018). Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of environmental management, 224, 263-276.
https://doi.org/10.1016/j.jenvman.2018.07.051
12. Rentsenorov, U., Davaabal, B., & Temuujin, J. (2018). Synthesis of Zeolite A from Mongolian Coal Fly Ash by Hydrothermal Treatment. In Solid State Phenomena (Vol. 271, pp. 1-8). Trans Tech Publications Ltd.
https://doi.org/10.4028/www.scientific.net/SSP.271.1
13. Lee, Y. R., Soe, J. T., Zhang, S., Ahn, J. W., Park, M. B., & Ahn, W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821-843.
https://doi.org/10.1016/j.cej.2017.02.124
14. Wulandari, W., Paramitha, T., Rizkiana, J., & Sasongko, D. (2019, June). Characterization of Zeolite A from Coal Fly Ash Via Fusion-Hydrothermal Synthesis Method. In IOP Conference Series: Materials Science and Engineering (Vol. 543, No. 1, p. 012034). IOP Publishing.
https://doi.org/10.1088/1757-899X/543/1/012034
15. Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., ... & Dath, J. P. (2018). Specific surface area determination for microporous/mesoporous materials: the case of mesoporous FAU-Y zeolites. Langmuir, 34(47), 14134-14142.
https://doi.org/10.1021/acs.langmuir.8b02144
16. Wang, C., Leng, S., Guo, H., Cao, L., & Huang, J. (2019). Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Applied Surface Science, 478, 319-326.
https://doi.org/10.1016/j.apsusc.2019.01.263
17. Sabadash, V., Mylanyk, O., Matsuska, O., & Gumnitsky, J. (2017). Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry & Chemical Technology, 4 (11), 2017, 11(4), 459-462.
https://doi.org/10.23939/chcht11.04.459
18. Demol, R., Vidal, D., Shu, S., Bertrand, F., & Chaouki, J. (2019). Mass transfer in the homogeneous flow regime of a bubble column. Chemical Engineering and Processing-Process Intensification, 144, 107647.
https://doi.org/10.1016/j.cep.2019.107647
19. Titscher, P., Götz von Olenhusen, A., Arlt, T., Manke, I., & Kwade, A. (2019). Evaluation of a High‐Intensive Mixing Process in a Ring Shear Mixer and Its Impact on the Properties of Composite Particles for Lithium-Sulfur Battery Cathodes. Energy Technology
https://doi.org/10.1002/ente.201801059