Quantum-chemical modeling of the processes of cadmium sulfide and cadmium selenide films synthesis in aqueous solutions

2021;
: 26-32
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The quantum-chemical modeling of the synthesis process chemistry of CdS and CdSe in aqueos solutions was carried out. For that reason, the CdS synthesis simulation was carried out through the formation of Cd(II) complex forms with the trisodium citrate and ammonium hydroxide. At the CdSe synthesis, the sodium selenosulfate with and without trisodium citrate was used. It was established that this process passes through several intermediate stages with the transitional reactive complexes formation. On the basis of obtained data, the energy stages diagrams are constructed and the comparison of CdS and CdSe synthesis processes with various complexing agents has been carried out. The CdS and CdSe films were obtained by chemical synthesis method from an aqueous solution of cadmium salt, complexing and chalcogenizing agents. X-ray phase analysis confirmed the formation of desired compounds, which was predicted by modeling.

1. Thiel, W. (2014). Semiempirical quantum-chemical methods. WIREs Computational Molecular Science, 4(2), 145-157. doi:10.1002/wcms.1161
https://doi.org/10.1002/wcms.1161
2. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical and experimental investigation of complex structures citrate of zinc (II). Inorganica Chimica Acta, 425, 164-168. doi: 10.1016/j.ica.2014. 10.025
https://doi.org/10.1016/j.ica.2014.10.025
3. Bertoli, A. C., Carvalho, R., Freitas, M. P., Ramalho, T. C., Mancini, D. T., Oliveira, M. C., Varennes A., & Dias, A. (2015). Theoretical spectroscopic studies and identification of metal-citrate (Cd and Pb) complexes by ESI-MS in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 271-280. doi: 10.1016/j.saa.2014.08.053
https://doi.org/10.1016/j.saa.2014.08.053
4. Markov, V., Maskayeva, L., & Ivanov, P. (2006). Gidrokhimicheskoye osazhdeniye plenok sul'fidov metallov: modelirovaniye i yeksperiment. Yekaterinburg: UrO RAN
5. Berg, L., Meshchenko, K., & Bogomolov, Yu. (1970). Vybor optimal'nykh usloviy osazhdeniya plenok sul'fida svintsa. Neorganicheskiye materialy, 6(7), 1337-1338.
6. Markov, V, & Maskayeva, L. (2005). Raschet usloviy obrazovaniya tverdoy fazy khal'kogenidov metallov pri gidrokhimicheskom osazhdenii. Yekaterinburg: GOU VPO UGTU−UPI.
7. Jalilehvand, F., Amini, Z., & Parmar, K. (2012). Cadmium (II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study. Inorganic Chemistry, 51(20), 10619-10630. doi:10.1021/ic300852t
https://doi.org/10.1021/ic300852t
8. Lurye. Yu. Yu. (1989). Spravochnik po anali-ticheskoy khimii. Moskva: Khimiya..
9. Bochkarev, V., Soroka, L., Klimova, T., & Velikorechina, L. (2015). Modeling of Condensation Reaction of Aniline to Diphenylamine by PM7 Method. Procedia Chemistry, 15, 320-325. doi:10.1016/j.proche. 2015.10.051
https://doi.org/10.1016/j.proche.2015.10.051
10. Somekawa, K. (2014). Molecular Simulation of Potential Energies, Steric Changes and Substituent Effects in Photochromic Cyclization/Cycloreversion of Three Kinds of Dithienylethenes by MOPAC-PM6 Method. Journal of Computer Chemistry, Japan, 13(4), 233-241. doi:10.2477/jccj.2014-0013
https://doi.org/10.2477/jccj.2014-0013
11. Stewart, J. (2016). MOPAC2016 Home Page. Retrieved from http://openmopac.net/MOPAC2016.html
12. Senda, N. (2018). Winmostar - Structure modeler and visualizer for free Chemistry simulations. Retrieved from https://winmostar.com/
13. Sozanskyi, M. A., Shapoval, P. Y., Guminilovych, R. R., Laruk, M. M., & Yatchyshyn, Y. Y. (2019). Synthesis of cadmium sulfide thin films from an aqueous solution containing sodium citrate. Voprosy Khimii I Khimicheskoi Tekhnologii, (2), 39-46. doi:10.32434/ 0321-4095-2019-123-2-39-46
https://doi.org/10.32434/0321-4095-2019-123-2-39-46
14. Il'Chuk, G. A., Kurilo, I. V., Kus'Nezh, V. V., Petrus', R. Y., & Shapoval, P. I., Guminilovich, R. R., Partyka, M.V., Tokarev, S. V. (2014). Growth of thin CdS films on glass substrates via reaction of thiourea with cadmium acetate in aqueous solution. Inorganic Materials, 50(8), 762-767. doi:10.1134/s0020168514080093.
https://doi.org/10.1134/S0020168514080093
15. Sozanskyi, M., Shapoval, P., Guminilovych, R., Yatchyshyn, Y., Stadnik, V., & Koval, N. (2018). Khimichne osadzhennya z vann plivok kadmiy sul'fidu ta kadmiy selenidu. Proceedings of the ХVI International Scientific and Methodical Conference SHLA-2018, April 25-27, 2018. Lviv, Ukraine, 173-174.
16. Guminilovych, R. R., Shapoval, P. I., Yatchyshyn, I. I., Il'Chuk, G. A., & Kusnezh, V. V. (2013). Chemical surface deposition and growth rate of thin CdSe films. Russian Journal of Applied Chemistry, 86(5), 696-702. doi:10.1134/s1070427213050157
https://doi.org/10.1134/S1070427213050157
17. Kraus, W., & Nolze, G. (1996). POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920
https://doi.org/10.1107/S0021889895014920
18. Sozanskyi, M. A., Guminilovych, R. R., Shapoval, P. Yo., Yatchyshyn, Yo. Yo., Stadnik, V., & Koval, N. (2018). Methods of synthesis of CdSe films with good adhesion to glass substrates. Abstracts of the 5th International Congress "Sustainable Development: Environmental Protection. Energy Saving. Sustainable Environmental Management", 26-29th September, 2018. Lviv, Ukraine, 91.