Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions

2021;
: 82-87
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv National Agrarian University
5
Lviv Polytechnic National University

The results of investigations of the influence of main parameters (surfactant concentration and temperature) on the synthesis of silver nanoparticles (AgNPs) by the sonoelectrochemical method in polyvinylpyrrolidone (PVP) solutions by cyclic voltammetry (CVA) are presented. It is shown that the ultrasonic field (22 kHz) leads to an increase in the anodic and cathodic currents by ~30%. A scheme of the AgNPs formation has been proposed, which includes the following main processes: 1) dissolution of sacrificial silver anodes at E = 0.2...1.0 V with the formation of [AgPVP]+ complex ions; 2) cathodic and sonochemical reduction of the latter to Ag(0); 3) formation of AgNPs. It has been established that with an increase in PVP concentration from 1 to 4 g·L-1, the anodic and cathodic currents decrease by 40-60%. The formation rate of AgNPs also decreases. The growth of anodic and cathodic currents and the formation rate of nanoparticles in the range of 20…60 °C corresponds to the diffusion-kinetic action of the temperature factor. The CVA curves practically do not change in time, which indicates the stability of anodic and cathodic processes at prolonged sonoelectrochemical synthesis. The character of the UV-Vis spectra of AgNPs colloidal solutions in PVP with the 405…410 nm absorption maximum is the same in a wide range of nanoparticle concentrations.

1. Birkin, P. R., Offin, D. G., Joseph, P. F., & Leighton, T. G. (2005). Cavitation, shock waves and the invasive nature of sonoelectrochemistry. The Journal of Physical Chemistry B, 109(35), 16997-17005. https://doi.org/10.1021/jp051619w
https://doi.org/10.1021/jp051619w
2. Sáez, V., & Mason, T. J. (2009). Sonoelectrochemical synthesis of nanoparticles. Molecules, 14(10), 4284-4299. https://doi.org/10.3390/molecules14104284
https://doi.org/10.3390/molecules14104284
3. Sakkas, P., Schneider, O., Martens, S., Thanou, P., Sourkouni, G., & Argirusis, C. (2012). Fundamental studies of sonoelectrochemical nanomaterials preparation. Journal of Applied Electrochemistry, 42(9), 763-777. https://doi.org/10.1007/s10800-012-0443-z
https://doi.org/10.1007/s10800-012-0443-z
4. Hihn, J. Y., Doche, M. L., Hallez, L., Taouil, A. E., & Pollet, B. G. (2018). Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes. The Electrochemical Society Interface, 27(3), 47. https://doi.org/10.1149/2.F05183if
https://doi.org/10.1149/2.F05183if
5. Islam, M. H., Paul, M. T., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics sonochemistry, 59, 104711. https://doi.org/ 10.1016/j.ultsonch.2019.104711
https://doi.org/10.1016/j.ultsonch.2019.104711
6. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396-6399. https://doi.org/ 10.1021/la991507u
https://doi.org/10.1021/la991507u
7. Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., & Zaban, A. (2002). Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 18(12), 4736-4740. https://doi.org/10.1021/la015689f
https://doi.org/10.1021/la015689f
8. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506-509. https://doi.org/10.1016/ j.inoche.2004.02.003
https://doi.org/10.1016/j.inoche.2004.02.003
9. Liu, Y. C., & Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163-1168. https://doi.org/10.1016/j.elecom.2004.09.010
https://doi.org/10.1016/j.elecom.2004.09.010
10. Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116(2-3), 464-468. https://doi.org/10.1016/ j.matchemphys.2009.04.004
https://doi.org/10.1016/j.matchemphys.2009.04.004
11. Kuntyi, O., Shepida, M., Sozanskyi, M., Sukhatskiy, Y., Mazur, A., Kytsya, A., & Bazylyak, L. (2020). Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution, 11(4), 12202-12214. https://doi.org/10.33263/BRIAC114.1220212214
https://doi.org/10.33263/BRIAC114.1220212214
12. Pollet, B. G. (2010). The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy, 35(21), 11986-12004. https://doi.org/ 10.1016/j.ijhydene.2010.08.021
https://doi.org/10.1016/j.ijhydene.2010.08.021
13. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 14, 2773. https://doi.org/10.2147/IJN.S196472
https://doi.org/10.2147/IJN.S196472
14. Mozaffari, S., Li, W., Dixit, M., Seifert, S., Lee, B., Kovarik, L., ... & Karim, A. M. (2019). The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Advances, 1(10), 4052-4066. https://doi.org/10.1039/C9NA00348G
https://doi.org/10.1039/C9NA00348G
15. Kuntyi, О. І., Kytsya, А. R., Mertsalo, I. P., Mazur, А. S., Zozula, G. І., Bazylyak, L. I., & Тоpchak, R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid and Polymer Science, 297(5), 689-695. https://doi.org/10.1007/s00396-019-04488-4
https://doi.org/10.1007/s00396-019-04488-4
16. Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., & Prokopalo, A. (2020). Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Letters, 15(12), 802-807. https://doi.org/10.1049/mnl.2020.0195
https://doi.org/10.1049/mnl.2020.0195
17. Kuntyi, O. I., Kytsya, А. R., Bondarenko, A. B., Mazur, А. S., Mertsalo, I. P., & Bazylyak, L. I. (2021). Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid and Polymer Science, 1-9. https://doi.org/10.1007/s00396-021-04811-y
https://doi.org/10.1007/s00396-021-04811-y
18. Malina, D., Sobczak-Kupiec, A., Wzorek, Z., & Kowalski, Z. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials & Biostructures, 7(4).
https://doi.org/10.1049/mnl.2012.0415
19. Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898-8904.https://doi.org/10.1021/jp0349031
https://doi.org/10.1021/jp0349031
20. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105-110. https://doi.org/ 10.1006/jssc.1996.0015
https://doi.org/10.1006/jssc.1996.0015
21. Okitsu, K., & Cavalieri, F. (2018). Synthesis of metal nanomaterials with chemical and physical effects of ultrasound and acoustic cavitation. In Sonochemical Production of Nanomaterials, pp. 19-37. Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2
https://doi.org/10.1007/978-3-319-96734-9_2