The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification

2020;
: pp. 47 - 54
1
Ukrainian State University of Chemical Technology, 8, Gagarina Ave.
2
Department of Inorganic Substances and Ecology, Ukrainian State University of Chemical Technology
3
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

The contact non-equilibrium low-temperature plasma technique is used to synthesize silver nanoparticles (AgNPs) employing polyvinyl pyrrolidone (PVP) as a capping agent. Influences of PVP concentration on the formation efficiency of silver nanoparticle, their average size and stability have been studied. The synthesized silver nanoparticles had a significant antibacterial activity against two strains of Gram bacteria. Silver nanoparticles (AgNPs)-alginate composite beads with different PVP concentration were synthesized as materials for water purification.

  1. Sudhakar P., Soni H.: J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053
  2. Tao L., Lou Y., Zhao Y. et al.: J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z
  3. Alshehri A., Jakubowska M., Młożniak A. et al.: Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569
  4. Deepak S., Niladri S., Gyanaranjan S. et al.: Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038
  5. Franci G., Falanga A., Galdiero S. et al.: Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856
  6. Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B.: Res. Pharm. Sci., 2014, 9, 385.
  7. Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696
  8. Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497
  9. Skiba M., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914
  10. Pivovarov О., Skіba М., Makarova А. et al.: Voprosy Khim. Khim. Tekhnol., 2017, 6, 82.
  11. Skiba M., Pivovarov A., Makarova A., Vorobyova V.: East.-Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103
  12. Skiba M., Pivovarov A., Makarova A., Vorobyova V.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475
  13. Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Voprosy Khim. Khim. Tekhnol., 2018, 3, 113.
  14. Muthivhi R., Parani B., Oluwafemi M.: Nano-Struct. Nano-Objects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008
  15.  El Hotaby W., Sherif H., Hemdan B. et al.: Acta Physica Polonica A, 2017, 131, 1554.
  16. Tseng K., Chou C., Liu T. et al.: Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849
  17. Bharati V., Xavier P., Kar G. et al.: J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712
  18. Naseri M., Saion E., Zadeh N.: Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19
  19. Mirzaei A., Janghorban K., Hashemi B. et al.: J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3
  20. Khanna P., Singh N., Kulkarni D. et al.: Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
  21. Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S.: Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/C5DT02964C
  22. Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M.: Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244
  23. Magdassi S., Bassa A., Vinetsky Y., Kamyshny A.: Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b
  24. Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O.: Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187
  25. Skorokhoda V., Semenyuk N., Dziaman I. et al.: Voprosy Khim. Khim. Tekhnol., 2018, 2, 101.
  26. Pencheva D., Bryaskova R., Kantardjiev T.: Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016
  27. Wang X., Fan W., Dong Z. et al.: Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048
  28. Cho K., Park J., Osaka T., Park S.: Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
  29. Saliminasab M., Garaei M., Moradian R. et al.: Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8
  30. Taylor P., Ussher A., Burrell R.: Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040
  31. Amendola V., Bakr O., Stellacci F.: Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4
  32. Lee H., Lee S., Oh E. et al.: J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041
  33. Kitller S., Greulich G., Gebauer J. et al.: J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B
  34. Silva L., Silveira A., Bonatto C. et al.: Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3
  35. Kiss F., Miotto R., Ferraz A.: Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708