PECULIARITIES OF OBTAINING AND PROPERTIES OF COMBINED HYDROGEL MEMBRANES BASED ON POLYCOPROAMIDE AND POLYVINYLPYRROLIDONE COPOLYMERS

2021;
: 203-209
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The research results of surface adsorption magnitude and tensile strength of combined polyamide-hydrogel membranes, depending on the content of the hydrogel lining membrane are presented in the article. It was found that the molecular weight variation of PVP, both in the structure of copolymer and in modifying blend, as well as the time of staying hydrogel film in the modifying solution allow to regulate the properties of combined membranes directly, in particular, its strength and permeability.

1. Francis X. Quinn, Eithne Kampff, Gerard Smyth, and Vincent J. McBrierty. A, (1988). Study of Water in Poly(N-vinyl-2-pyrrolidone/methyl methacrylate) Copolymer. Macromolecules, 21, 3191-3198. doi.org/10.1021/ma00189a012
https://doi.org/10.1021/ma00189a012
2. Mohana Y. M., Leea K., Premkumar T., Geckeler K. E. (2007). Hydrogel networks as nanоreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer., 48(1), 158-164. doi: 10.1016 / j.polymer.2006.10.045
https://doi.org/10.1016/j.polymer.2006.10.045
3. Rosiak J. M., Yoshii F. (1999). Hydrogels and their medical applications. Nucl. Instrum Methods Phys. Res. Sec. B., 151, 56-64. doi: 10.1016 / S0168-583X (99) 00118-4
https://doi.org/10.1016/S0168-583X(99)00118-4
4. Galaev I. Y., Mattiasson B. (1999). Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol,17, 335-340. doi: 10.1016 / s0167-7799 (99) 01345-1
https://doi.org/10.1016/S0167-7799(99)01345-1
5. Peppas N., A., Huang Y., Torres-Lugo M., Ward J. H., Zhang J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng., 2, 9-29. doi: 10.1146 / annurev.bioeng.2.1.9
https://doi.org/10.1146/annurev.bioeng.2.1.9
6. Omidian H., Rocca J. G., Park K. (2005). Advanced in superporous hydrogels. Journal of Controlled Release, 102, 3-12. doi: 10.1016/j.jconrel.2004.09.028
https://doi.org/10.1016/j.jconrel.2004.09.028
7. Jiang H., Zeng X. (2013). Microlenses: Properties, Fabrication and Liquid Lenses. CRC Press, 228.
8. Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery reviews, 43, 3-12. doi: 10.1016/s0169-409x(01)00239-3
https://doi.org/10.1016/S0169-409X(01)00239-3
9. Peppas N. A., Bures P., Leobandung W., Ichikawa H. (2000). Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 50(1), 27-46.  doi: 10.1 -6411(00)00090-4
https://doi.org/10.1016/S0939-6411(00)00090-4
10. Peppas N. A. (1986). Hydrogels in Medicine and Pharmacy. Florida: CRC Press Inc., Boca Raton, 1-3. doi.org/10.1002/pi.4980210223
11. Park K., Shalaby W.S.W. and Park H. (1993). Biodegradable hydrogels for drug delivery, Inc., Lancaster, PA: Basle: Technomic Publishing Co., 252. doi.org/10.1177/088391159400900207
12. Baldwin S. P., Saltzman W. M. (1998). Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev., 33, 71-86. doi: 10.1016 / s0169-409x (98) 00021-0
https://doi.org/10.1016/S0169-409X(98)00021-0
13. Grytsenko О., Pokhmurska А., Kovalchuk R. (2018). Technological features in obtaining highly effective hydrogel dressings for medical purposes. Eastern-European Journal of Enterprise Technologies, 6(6), 6-13. doi: 10.15587/1729-4061.2018.150690
https://doi.org/10.15587/1729-4061.2018.150690
14. Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24, 4337- 4351. doi: 10.1016 / s0142-9612 (03) 00340-5.
https://doi.org/10.1016/S0142-9612(03)00340-5
15. Gehrke S. H. (2000). Synthesis and properties of hydrogels used for drug delivery, Drugs Pharm. Sci., 102, 473-546.
https://doi.org/10.1201/9780203909478.ch13
16. Manabu S. (1981). Polimery medychnoho pryznachennia. Moskva: Medytsyna, 248.
17. Lavrov N. A., Kryzhanovskaia T. S. (1995).Poliakrylaty v medytsyni. Plastychni masy, 2,42-43.
18. Suberlyak O., Grytsenko O., Kochubei V. (2015). The Role of FeSO4 in the Obtaining of Polyvinylpirrolidone Copolymers. Chemistry & Chemical Technology, 9(4), 429-434.http://nbuv.gov.ua/UJRN/Chemistry_2015_9_4_8.
https://doi.org/10.23939/chcht09.04.429
19. By Nicholas A. Peppas, J. Zach Hilt, Ali Khademhosseini, and Robert Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater., 18, 1345-1360. doi: 10.1002/adma.200501612
https://doi.org/10.1002/adma.200501612
20. Suberlyak O. V., Baran N. M., Melnyk Y. Y., Yatsulchak G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3, 121-126.
21. Melnyk Yu. Ya., Baran N. M., Yatsulchak H. V., Komyshna M. H. (2017). Formuvannia ta vlastyvosti kompozytsiinykh poliamid-hidrohelevykh membran. Visnyk NU"Lvivska politekhnika" "Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia", 868, 406-412.
22. Suberliak O. V., Melnyk Yu. Ia., Skorokhoda V. I. 11.04.2011. Pat. Ukrainy № 94173. Natsionalnyi universytet «Lvivska politekhnika». Opubl. - Biul. № 7
23. Suberlyak O. V., Baran N. M., Yatsul'chak H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397.  https://doi.org/10.1007/s11003-017-0087-6
https://doi.org/10.1007/s11003-017-0087-6
24.  Kargin V. A., Slonimskiy G. L. (1967). Kratkie ocherki po fiziko-himii polimerov. Moskva: Himiya, 232.
25. Skorokhoda V., Melnyk Y., Semenyuk N., Suberlyak O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9 (1), 55-59. https://doi.org/10.23939/chcht09.01.055
https://doi.org/10.23939/chcht09.01.055
26. Fazullin D. D., Mavrin G. V., Melkonyan R. G. (2013). Kompozitsionnyie membranyi s modifitsirovannyim poverhnostnyim sloem. Mezhdunarodnyiy nauchno-issledovatelskiy zhurnal, 9-1 (16). - C. 45-47.
27. Suberlyak O., Melnyk Yu., Skorokhoda V. (2015). Regularities  of Preparation and Properties of Hydrogel Membranes. Materials Science, 50(6), 889-896. https://doi.org/10.1007/s11003-015-9798-8
https://doi.org/10.1007/s11003-015-9798-8
28. Dubyaga V. P., Perepechkin L. P., Katalevskiy E. E. (1981). Polimernyie membranyi. Moskva: Himiya, 232.
29. Suberliak O. V., Baran N. M., Melnyk O. V. (2008). Doslidzhennia vzaiemodii v systemi poliamid -polivinilpirolidon v rozchynakh. Visnyk NU "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 609, 356-360.