Composite materials based on copolymers of polyvinylpyrrolidone and 2-hydroxyethylmethacrylate with combined fillers consisting of metal powders and graphite were obtained by the method of polymerization filling. The developed materials are characterized by sufficiently high physical and mechanical properties, increased electrical conductivity and water content. It was established that the addition of graphite to metal-filled copolymers increases the sensitivity of the electrical resistance of composites to moisture changes.
1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S.K., &Bajpai, M. (2007). Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. Journal of Macromolecular Science, 45, 107-119. doi:10.1080/10601320701683470
https://doi.org/10.1080/10601320701683470
2. Los, P., Lukomska, A.,&Jeziorska, R. (2021). Metal-polymer composites for electromagnetic interference shielding applications.Polimery,61, 663-669. doi:10.14314/polimery.2016.663
https://doi.org/10.14314/polimery.2016.663
3. Nicolais, L.,&Carotenuto, G. (2005). Metal-polymer nanocomposites. New Jersey: John Wiley & Sons. doi:10.1002/0471695432
https://doi.org/10.1002/0471695432
4. Yaman, K. (2022). Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing. Polymer Bulletin, 79, 3309-3332. https://doi.org/10.1007/s00289-021-03665-2
https://doi.org/10.1007/s00289-021-03665-2
5. Kucherenko, A., Moravskyi, V., Kuznetsova, M., Grytsenko, O.; Masyuk, A.,&Dulebova, L. (2020). Regularities of obtaining metal-filled polymer composites. A.Pogrebnjak, M. Pogorielov,& R.Viter, (Eds.), Nanomaterials in Biomedical Application and Biosensors (NAP-2019) (pp. 59-66). Singapore: Springer. doi: 10.1007/978-981-15-3996-1_6
https://doi.org/10.1007/978-981-15-3996-1_6
6. Wang, L., Wang, H., Huang, X.W., Song, X., Hu, M., Tang, L., Xue, H.,&Gao, J. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry, 6(47), 24523-24533. doi:10.1039/c8ta07847e
https://doi.org/10.1039/C8TA07847E
7. Li, H., Yang, P., Pageni, P.,&Tang, C. (2017). Recent advances in metal-containing polymer hydrogels. Macromolecular Rapid Communications, 38(14), 1-20. doi:10.1002/marc.201700109
https://doi.org/10.1002/marc.201700109
8. Naseem, K., Begum, R., &Farooqi, Z. (2018). Platinum nanoparticles fabricated multiresponsive microgel composites: Synthesis, characterization, and applications. Polymer Composites, 39(7), 2167-2180. https://doi.org/10.1002/pc.24212
https://doi.org/10.1002/pc.24212
9. Burhannuddin, N., Nordin, N., Mazlan, S., Aziz, S., Kuwano, N.,& Jamari, S. (2021). Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 11, 868. https://doi.org/10.1038/s41598-020-80539-z.
https://doi.org/10.1038/s41598-020-80539-z
10. RangaReddy, P., MohanaRaju, K., & SubbaramiReddy, N. (2013). A review on polymer nanocomposites: monometallic and bimetallic nanoparticles for biomedicial, optical and engineering applications. Chemical Science Review and Letters, 1(4), 228-235
11. Rozik, N., Asaad, J., Mansour, S., & Gomaa, E. (2016). Effect of aluminum and aluminum/nickel hybrid fillers on the properties of epoxy composites. Proceedings of the Institution of Mechanical Engineers, 230(2), 550-557. https://doi.org/10.1177/1464420715581523
https://doi.org/10.1177/1464420715581523
12. Amoabeng, D., & Velankar, S. (2017). A review of conductive polymer composites filled with low melting point metal alloys. Polymer Engineering & Science, 58, 1010-1019. https://doi.org/10.1002/pen.24774.
https://doi.org/10.1002/pen.24774
13. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018).Functional stimuli-responsive gels: hydrogels and microgels. Gels, 4(2), 54.doi:10.3390/gels4020054
https://doi.org/10.3390/gels4020054
14. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015).Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Advanced Science, 2(1-2), 1400010.doi:10.1002/advs.201400010
https://doi.org/10.1002/advs.201400010
15. Biondi, M., Borzacchiello, A., Mayol, L., & Ambrosio, L. (2015). Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels, 1(2), 162-178. https://doi.org/10.3390/gels1020162
https://doi.org/10.3390/gels1020162
16. Schexnailder P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and polymer science, 287, 1-11. https://doi.org/10.1007/s00396-008-1949-0
https://doi.org/10.1007/s00396-008-1949-0
17. Grytsenko, O., Pukach, P., Suberlyak, O., Shakhovska, N., & Karovič, V. (2021). Usage of mathematical modeling and optimization in development of hydrogel medical dressings production. Electronics, 10(5), 1-10, https://doi.org/10.3390/electronics10050620
https://doi.org/10.3390/electronics10050620
18. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P., Hernandez, J.C.R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. Blitz, J.P., Gun'ko, V.M. (eds.), Surface Chemistry in Biomedical and Environmental Science (pp. 229-240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20
https://doi.org/10.1007/1-4020-4741-X_20
19. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. G. Gerlach, & K. F. Arndt (еds.), Hydrogel sensors and actuators (рр. 197-220). Berlin, Heidelberg: Springer.https://doi.org/10.1007/978-3-540-75645-3_6
https://doi.org/10.1007/978-3-540-75645-3_6
20. Tan, N. P. B., Lee, C. H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105-118. https://doi.org/10.3390/polym8040105.
https://doi.org/10.3390/polym8040105
21. Dong, W., Yao, D., & Yang, L. Soft bimodal sensor array based on conductive hydrogel for driving status monitoring. Sensors, 20, 1641. https://doi.org/10.3390/s20061641
https://doi.org/10.3390/s20061641
22. Koerner, J., Leu, H-Y, Magda, J., Reiche, C.F., &Solzbacher, F. (2018). Fast-reacting smart hydrogel-based sensor platform for biomedical applications. TechConnect Briefs, 3,206-208
23. Suberlyak, O. V., Skorokhoda, V. Y., &Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236-238
24. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., &Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu «Lvivska politekhnika», 414, 82-85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
25. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika»,488, 300-303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf
26. Suberlyak, O., Hishchak, Kh., Grytsenko, O., Ostapchuk, A. (2009). Doslidzhennya polimeryzatsiyi polivinilpirolidon-(met)akrylatnykh kompozytsiy v prysutnosti dribnodyspersnykh poroshkiv metaliv.Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 644, 283-289. Retrieved from: https://ena.lpnu.ua/handle/ntb/2650.
27. Grytsenko, O., Baran, N., Dulebova, L., &Berezhnyy, B. (2022). The effect of the filler nature on the properties of hydrogels based on polyvinylpyrrolidone copolymers. Scientific notes of Taurida National V.I. Vernadsky University series «Technical Sciences».33(72), 211-216. https://doi.org/10.32782/2663-5941/2022.6/29
https://doi.org/10.32782/2663-5941/2022.6/29
28. Grytsenko, O., Dulebova, L., Spišák, E., &Berezhnyy, B. (2022). New materials based on polyvinylpyrrolidone-containing copolymers with ferromagnetic fillers.Materials, 15(15),5183-1-5183-21. https://doi.org/10.3390/ma15155183
https://doi.org/10.3390/ma15155183
29. Grytsenko, О., Horbenko, N., Gayduk, A., & Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223-229. https://doi.org/10.15421/40260141/
https://doi.org/10.15421/40260141
30. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G. &Berezhnyy, B. (2020). Formation features of tubular products on the basis of composite hydrogels. Chemistry & chemical technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312
31. Suberlyak, О., Hrytsenko, O., & Hishchak Kh. (2008). Synthesis of new conducting materials on the basis of polymer hydrogels. Chemistry & сhemical technology, 2(2), 99-104. Режим доступу: https://science.lpnu.ua/jcct/all-volumes-and-issues/volume-2-number-2-20...
https://doi.org/10.23939/chcht02.02.099
32. Gul', V. Ye., Shenfil', L. Z. (1984). Elektroprovodyashchiye polimernyye kompozitsii. Moskva: Khimiya.