Technological features of the formation of film products from modified hydrogels by the centrifugal method

2024;
: 202-210
1
Lviv Polytechnic National University
2
Technical University of Košice, Department of CAx Technologies
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Processing of polymers and composites based on them by centrifugal molding is important for production the bodies of revolution, which are used in various industries. This article analyzes the centrifugal molding and presents the results of research about new areas of such materials applications. For instance as method for the hydrogel films production of materials based on copolymers of 2-hydroxyethyl methacrylate (HEMA) with polyvinylpyrrolidone (PVP), including filled hydrogels, which can be applicable in medicine, electrical and tool engineering.

1. Shrivastava, A. Introduction to Plastics Engineering. A volume in Plastics Design Library. New York: William Andrew Publishing. Elsevier Inc., 2018. 246p. https://doi.org/10.1016/C2014-0-03688-X
https://doi.org/10.1016/C2014-0-03688-X
2. Baur, E., Osswald, T., Rudolph, N. Plastics Handbook. The Resource for Plastics Engineers. Munich: Carl Hanser Verlag, 2019. 680p. https://doi.org/10.3139/9781569905609
https://doi.org/10.3139/9781569905609
3. Osswald, T. Understanding Polymer Processing. Processes and Governing Equations. Second Edition. Munich: Carl Hanser Verlag GmbH & Co. KG., 2017. 362p. https://doi.org/10.3139/9781569906484
https://doi.org/10.3139/9781569906484
4. Olson, L.G., Crawford, R., Kearns, M., Geiger, N. (2000). Rotational molding of plastics: Comparison of simulation and experimental results for an axisymmetric mold. Polymer Engineering & Science. 40(8), 1758-1764. https://doi.org/10.1002/pen.11307
https://doi.org/10.1002/pen.11307
5. Hashmi, S. A. R., Dwivedi, U. K. (2006). Estimation of Concentration of Particles in Polymerizing Fluid during Centrifugal Casting of Functionally Graded Polymer Composites. Journal of Polymer Research, 14(1), 75-81. doi:10.1007/s10965-006-9083-5.
https://doi.org/10.1007/s10965-006-9083-5
6. Stabik, J., Dybowska, A., Pluszyñski, J., Szczepanik, M., Suchoñ, £. (2010). Magnetic induction of polymer composites filled with ferrite powders. Archives of Materials Science and Engineering, 41(1), 13-20
7. Jachowicz, T., Sikora, J. (2013). Investigation of the influence of mold rotational speed on the cast wall thickness in the rotational molding process. Advances in Science and Technology Research Journal, 7(19), 79-87. DOI: 10.5604/20804075.1062380
https://doi.org/10.5604/20804075.1062380
8. Zhang, H., Zhang, L., Chen, X., Wang, Y., Zhao, F., Luo, M., Liao, S. (2020). The Role of Non-Rubber Components on Molecular Network of Natural Rubber during Accelerated Storage. Polymers, 12, 2880. https://doi.org/10.3390/polym12122880
https://doi.org/10.3390/polym12122880
9. Funabashi, M. (1997). Gradient composites of nickel coated carbon fibre filled epoxy resin moulded under centrifugal force. Composites Part A, 28, 731-737. https://doi.org/10.1016/S1359-835X(97)00016-X
https://doi.org/10.1016/S1359-835X(97)00016-X
10. Calò, E., Massaro, C., Terzi, R. (2012). Rotational Molding of Polyamide-6 Nanocomposites with Improved Flame Retardancy. International Polymer Processing, 27, 370-377. https://doi.org/10.3139/217.2552
https://doi.org/10.3139/217.2552
11. Wang, F., Yao, W.G., Qiao, C.D., Jia, Y.X. (2012). Finite element analysis of the physical gelation process of PVC plastisol during rotational molding. Acta Polymerica Sinica, 9, 1035-1041.DOI:10.3724/SP.J.1105.2012.12081
https://doi.org/10.3724/SP.J.1105.2012.12081
12. Rusu, M., Ibanescu, C., Murariu, M., Bordeianu, A., Balint, S., Andrei, E. (1998). Centrifugal Casting of Polyamide 6. Influence of Thermal Treatment. Polymers and Polymer Composites, 6(3), 143-146. doi:10.1177/147823919800600303
https://doi.org/10.1177/147823919800600303
13. Martens T. (2011). Use of Fused Deposition Modeling of Polyphenylsulfone for Centrifugal Casting of Polyurethane: Material, Surface, and Process Considerations. Journal of manufacturing science and engineering, 133(5), 0510031-051003.10. https://doi.org/10.1115/1.4004848
https://doi.org/10.1115/1.4004848
14. Stabik, J., Dybowska, A., Chomiak, M. (2010). Polymer composites filled with powders as polymer graded materials. Journal of Achievements in Materials and Manufacturing Engineering, 43(1), 153-161
15. Watanabe, Y., Kawamoto, A., Matsuda, K. (2002). Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method. Composites Science and Technology, 62, 881-888. https://doi.org/10.1016/S0266-3538(02)00023-4
https://doi.org/10.1016/S0266-3538(02)00023-4
16. Kaelble, D. H. (1965). Spin casting of polymer films. Journal of Applied Polymer Science, 9(4), 1209-1212. doi:10.1002/app.1965.070090402.
https://doi.org/10.1002/app.1965.070090402
17. Suberlyak, O., Grytsenko, O., Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
https://doi.org/10.23939/chcht09.04.429
18. Grytsenko, O., Dulebova, L., Suberlyak, O., Skorokhoda, V., Spišák, E., Gajdos, I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580-4594. https://doi.org/10.3390/ma13204580
https://doi.org/10.3390/ma13204580
19. Suberlyak, O. V., Skorokhoda, V. Y.,Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236-238
20. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., &Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu «Lvivska politekhnika», 414, 82-85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
21. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 488, 300-303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf
22. Grytsenko, O., Jachowicz, T., Suberlyak, O., Krasinskyi, V. Development of equipment for the production of hydrogel films by centrifugal molding. Advanced technologies in designing, engineering and manufacturing research problems. Monography. Lublin, 2015, 29-42.
23. Suberlyak, O., Grytsenko, O., Hischak, K., Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry & chem. Tecnology, 7(3), 289-294. https://doi.org/10.23939/chcht07.03.289
https://doi.org/10.23939/chcht07.03.289
24. Grytsenko, O., Suberlak, O., Gajdoš, I., Fedasiuk, D. The features of film composite hydrogel materials obtaining technology by centrifugal molding. Technological and design aspects of extrusion and injection moulding of thermoplastic polymer composites and nanocomposites. Monography. Volume II: Kosice, 2014, 213-230.
25. Grytsenko, O. M., Suberlyak, O. V., Pokhmursʹka, A. V., Bedlʹovsʹka, Kh. M., Gaydos I. (2017). Osoblyvosti utvorennya poverkhni metalonapovnenykh hidrohelevykh plivok, oderzhanykh vidtsentrovym formuvannyam. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 868, 381-387.
26. Grytsenko, O., Suberlyak, O., Krasinskyi, V., Moravskyi, V., Berezhnyy, B. (2019). Physical-mechanical properties of metal-filled hydrogel films, obtained by centrifugal molding. Acta Mechanica Slovaca, 23(3), 18-23. DOI: 10.21496/ams.2019.024
https://doi.org/10.21496/ams.2019.024
27. Grytsenko, O.M., Suberlyak, O.V., Pokhmursʹka, A.V., Krasinsʹkyy, V.V., Voloshkevych, P.P. (2018). Zakonomirnosti vidtsentrovoho utvorennya metalonapovnenykh hidrohelevykh plyvok. Chemistry, Technology and Application of Substances, 1(2), 149-156.
https://doi.org/10.23939/ctas2018.02.149