Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic

2023;
: 8-14
1
Lviv Polytechnic National University
2
Ivan Franko National University of Lviv
3
Institute of Macromolecular Chemistry AS CR
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

The temperature dependence of the saturated vapor pressure and the combustion energy of 2-methyl-5-phenylfuran-3-carboxylic acid were determined by experimental methods. Based on the obtained data, the values of the enthalpies of combustion and formation in the condensed state were calculated. The enthalpy of sublimation was recalculated to 298K. The additive Benson scheme is supplemented with new fragments for calculating the enthalpies of formation in the gaseous state. The possibility of using the Joback method to calculate the enthalpies of formation of aryl furans in the gaseous state is analyzed.

1. Moya-Garzón M.D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144-7167. https://doi.org/10.1021/acs.jmedchem.8b00399
2.   Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. So, 129(30). 9258-9259. 
https://doi.org/10.1021/ja072817z
3.   Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323-3326. https://doi.org/10.1016/S0960-894X(03)00680-2
4.   Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19-23. https://doi.org/10.23939/chcht02.01.019
5.   Neuhaus W. C., Jemison А., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. 
https://doi.org/10.1021/acscatal.9b02608
6.   Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. 
https://doi.org/10.1021/acscatal.9b03744
7.   Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74-80. https://doi.org/10.22606/mocr.2017.22006
8.   Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8.  https://doi.org/10.1186/s13065-015-0144-x
9.   Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1-11.  https://doi.org/10.1186/s13065-019-0619-2
10. Sobechko, I., Horak, Y., Dibrivnyi, V., Goshko, L.,  Kostyk, R. (2020). Thermodynamic properties of 2-methyl-5-(4-methylphenyl)-3-furancarboxylic acids. Visnyk of the Lviv University. Series Chemistry, 61(2), 314. https://doi.org/10.30970/vch.6102.314
11. I.B. Sobechko, V.M. Dibrivnyi  , Yu.I. Gorak , L.V. Goshko (2022) Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances. 5 (2). 30-36. https://doi.org/10.23939/ctas2022.02.030
12. Ribeiro da Silva A. V. M., Monte J. S. M. (1990) The construction, testing and use of a new Knudsen effusion apparatus. Thermochimica Acta. 171. 169 - 183. 
https://doi.org/10.1016/0040-6031(90)87017-7
13. Ginkel, C. H. D. van, Kruif, C. G. de, & Waal, F. E. B. de. (2001). The need for temperature control in effusion experiments (and application to heat of sublimation determination). Journal of Physics E: Scientific Instruments, 8(6), 490-492. https://doi.org/10.1088/0022-3735/8/6/018
14. Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326.
15. http://www.codata.info/resources/databases/key1.html
16. Chickos, J. S., & Acree, W. E. (2003). Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880-2002. Journal of Physical and Chemical Reference Data, 32(2), 519-878. https://doi.org/10.1063/1.1529214
17. Sobechko I. (2016). Сalculation method of heat capacity change during organic compounds vaporization and sublimation. Chemistry & Chemical technology, 10(1). 27-33. 
https://doi.org/10.23939/chcht10.01.027
18. Benson, S. W. (1965). III - Bond energies. Journal of Chemical Education, 42(9), 502.https://doi.org/10.1021/ed042p502
19. https://en.wikipedia.org/wiki/Joback_method
20. Ribeiro da Silva, M. A. V., & Amaral, L. M. P. F. (2009). Standard molar enthalpies of formation of 2-furancarbonitrile, 2-acetylfuran, and 3-Furaldehyde. The Journal of Chemical Thermodynamics, 41(1), 26-29.  https://doi.org/10.1016/j.jct.2008.08.004
21. Roux, M. V., Temprado, M., Jiménez, P., Pérez-Parajón, & Notario, R. (2003). Thermochemistry of Furancarboxylic Acids. The Journal of Physical Chemistry A, 107(51), 11460-11467. 
https://doi.org/10.1021/jp030772s
22. Ribeiro da Silva, M. A. V., & Amaral, L. M. P. F. (2010). Standard molar enthalpies of formation of some methylfuran derivatives. Journal of Thermal Analysis and Calorimetry, 100(2), 375-380. https://doi.org/10.1007/s10973-009-0636-9