THERMODYNAMIC PROPERTIES OF 5- (2-NITROPHENYL) FURAN-2-CARBALDEHYDE AND ITS DERIVATIVES IN A CONDENSED STATE

1
Lviv Polytechnic National University
2
Ivan Franko National University of Lviv
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

Using the precision bomb combustion calorimeter B-08-MA, the combustion energies of 5- (2-nitrophenyl) -furan-2-carbaldehyde, 5- (2-nitro-4-methylphenyl) -furan-2-carbaldehyde and 5- ( 2-nitro-4-oxymethylphenyl) -furan-2-carbaldehyde. Based on the obtained data, the values of enthalpies of combustion and formation of substances in the condensed state are calculated. A comparative analysis of experimentally determined values with theoretically calculated values by additive calculation methods is given.

  1. Gandini A., Belgacem M. (1997). Furans in polymer chemistry. Progress in Polymer Science, 22 (6), 1203-1379. https://doi.org/10.1016/S0079-6700(97)00004-X
  2. Karateev A., Koryagin A., Litvinov D. et al. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, (1), 19-23.
  3. Neuhaus W. C., Jemison А., Kozlowski M. (2019) Vanadium-catalyzed selective oxidative homocoupling of alkenyl phenols to synthesize lignan analogs. ACS Catalysis, (10), 1-7. doi: 10.1021/acscatal.9b02608.
    https://doi.org/10.1021/acscatal.9b02608
  4. Yunzhu Wang, Shinya Furukawa, Xinpu Fu, and Ning Yan. (2019). Organonitrogen chemicals from oxygencontaining feedstock over heterogeneous catalysts. ACS Catalysis, (10), 1-97. doi: 10.1021/acscatal.9b03744.
    https://doi.org/10.1021/acscatal.9b03744
  5. Khallouk K., Solhy A., Kherbeche A., et al. (2020). Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5 (1)., 304-316. doi: 10.1021/acsomega.9b02159
    https://doi.org/10.1021/acsomega.9b02159
  6. Holla B.S., Akberali P.M, Shivananda M.K. (2000) Studies on arylfuran derivatives: part X. Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55 (4) 256-263.
    https://doi.org/10.1016/S0014-827X(00)00030-6
  7. Subrahmanya Κ. B., Shivarama Β. H. (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic Communications. 6 (6), 625-628. doi:10.1515/hc.2003.9.6.625
    https://doi.org/10.1515/HC.2003.9.6.625
  8. Darren R. Williams, Myung-Ryul Lee, Young-Ah Song, et al. (2007) Synthetic small molecules that induce neurogenesis in skeletal muscle. J. Am. Chem. Soc. 129 (30) (9258-9259.
    https://doi.org/10.1021/ja072817z
  9. Moya-Garzón M.D., Higueras M, Peñalver C., et al. (2018) Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J. Med. Chem. 61, 7144-7167. doi:10.1021/acs.jmedchem.8b00399
    https://doi.org/10.1021/acs.jmedchem.8b00399
  10. Denton, T.T., Srivastava, P., Xia, Z., et al. (2018). Identification of the 4-position of 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines as a key modification site eliciting increased potency and enhanced selectivity for cytochrome p-450 2a6 inhibition. J. Med. Chem. 61, 7065-7086. doi: 10.1021/acs.jmedchem.8b00084.
    https://doi.org/10.1021/acs.jmedchem.8b00084
  11. Joseph L. Duffy, Brian A. Kirk, Nancy J. Kevin et al (2003). HIV-1 Protease inhibitors with picomolar potency against pi-resistant hiv-1 by modification of the p1 0 substituent. Bioorg. Med. Chem. Lett. 13, 3323-3326. doi:10.1016/S0960-894X (03)00680-2.
    https://doi.org/10.1002/chin.200352173
  12. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci 14 (9), 18488-18501. doi:10.3390/ijms 140918488.
    https://doi.org/10.3390/ijms
  13. Kos R., Sobechko I., Horak Y., Sergeev V., Dibrivnyi V. (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate derivatives. Modern Organic Chemistry Research. 2 (2), 74-80. doi::10.22606/mocr.2017.22006
    https://doi.org/10.22606/mocr.2017.22006
  14. Dibrivnyi V., Sobechko I., Puniak M., et al. (2015) Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers. Chemistry Central Journal. 9:67. 1-8. doi: 10.1186/s13065-015-0144-x.
    https://doi.org/10.1186/s13065-015-0144-x
  15. Dibrivnyi V., Marshalek A., Sobechko I., et al. (2019) Thermodynamic properties of some isomeric 5(nitrophenyl)furyl2 derivatives. BMC Chemistry. 105. 1-11. doi: 10.1186/s13065-019-0619-2
    https://doi.org/10.1186/s13065-019-0619-2
  16. CODATA Recommended key values for thermodynamics. J. Chem. Thermodynamics. (1978) 10, 903.
    https://doi.org/10.1016/0021-9614(78)90050-2
  17. Cohen N. (1996). Revised group additivity values for enthalpies of formation (at 298 k) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data 25 (6), 1411-1481. doi: 10.1063/1.555988.
    https://doi.org/10.1063/1.555988
  18. Domalski E.S., Hearinga E.D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data 22 (4), 805-1159.
    https://doi.org/10.1063/1.555927
  19. Salmon А., Dalmazzone D. (2007) Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions - Part 2: Carbon-hydrogen, carbon-hydrogen- oxygen, and carbon-hydrogen-nitrogen-oxygen compounds Journal of Physical and Chemical Reference Data 36 (1), 19-58.  doi:10.1063/1.2435401
    https://doi.org/10.1063/1.2435401