Thermodynamic Properties of 6-Methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid Esters

2020;
: pp. 227 - 283
1
Lviv Polytechnic National University
2
Ivan Franko National University of Lviv
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Frantsevich Institute for Problems of Materials Science

Combustion energies of esters (ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate; ethyl 6-methyl-4-(4-methylphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate; ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate and ethyl 4-(6-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate) were experimentally obtained using a bomb calorimetry. According to the experimental data, the enthalpies of combustion and the enthalpies of formation in a solid state were calculated. Derivative analysis was used to investigate the compounds within the temperature range of 483.0–577.5 K. The enthalpies of fusion, vaporization and sublimation were calculated using the results of the differential thermal analysis. According to the obtained data, the enthalpies of formation of the investigated compounds in the gaseous state were calculated. The possibility of using the Benson additive scheme to calculate the enthalpy of formation is demonstrated.

  1. Barrow J., Nantermet P., Selnick H. et al.: J. Med. Chem., 2000. 43, 2703. https://doi.org/10.1021/jm990612y
  2. Mayer T., Kapoor T., Haggarty S. et al.: Science, 1999, 286, 971. https://doi.org/10.1126/science.286.5441.971
  3. Patil A., Kumar N., Kokke W. et al.: J. Org. Chem., 1995, 60, 1182. https://doi.org/10.1021/jo00110a021
  4. Kovtunenko V.: Likarski Zasoby z Dieiu na Centralny Nervovu Systemy. Perun, Kyiv 1997.
  5. Mashkovskyi M.: Lekarstvennye Sredstva. Novaya volna, Moskva 2012.
  6. Sandhu S., Sandhu J.: ARKIVOC, 2012, 2012, 66. https://doi.org/10.3998/ark.5550190.0013.103
  7. Sergeev V.: Russ. J. Phys. Chem. A, 2016, 90, 575. https://doi.org/10.1134/S0036024416030274
  8. Sergeev V., Van-Chin-Syan Yu.: Russ. J. Phys. Chem. A, 2015, 89, 406. https://doi.org/10.1134/S0036024415030279
  9. Sergeev V.., Van-Chin-Syan Yu.: Russ. J. Phys. Chem. A, 2012, 85, 689. https://doi.org/10.1134/S1070427212040283
  10. Sergeev V., Dibrivnyi V., Van-Chin-Syan Yu.: Russ. J. Appl. Chem., 2011, 84, 898. https://doi.org/10.1134/S1070427211050284
  11. Gangwar N., Kasana VK.: Med. Chem. Res., 2012, 21, 4506. https://doi.org/10.1007/s00044-012-9987-z
  12. Dibrivny V., Van-Chin-Syan Yu., Melnyk G.: Chem. Chem. Technol., 2008, 2, 1.
  13. Sobechko I., Dibrivnyi V., Horak, Y. et al.: Chem. Chem. Technol., 2017, 11, 397. https://doi.org/10.23939/chcht11.04.397
  14. Dibrivny V.: Doct. thesis, Lviv Polytechnic, Lviv 2008.
  15. CODATA Task Group: J. Chem. Thermodynamics, 1978, 10, 903. https://doi.org/10.1016/0021-9614(78)90050-2
  16. Sobechko I.: Chem. Chem. Yechnol., 2016, 10, 27. https://doi.org/10.23939/chcht10.01.027
  17. Sobechko I., Van-Chin-Syan Yu., Kochubei V. et al.: Russ. J. Phys. Chem. A., 2014, 88, 2046. https://doi.org/10.7868/S0044453714120322
  18. Van-Chin Syan Yu., Kochubei V., Sergeev V. et al.: Zh. Phys. Khimii, 1996, 70, 1932.
  19. Benson S.: Thermokhimichaskaya Kinetika. Mir, Moskva 1971.