Synthesis and study of the structure of copolymers of rarely crosslinked polyacrylic acid

2024;
: 196-201
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Uppsala University, Division of Nanotechnology and Functional Materials
6
Lviv Polytechnic National University

The effect of synthesis conditions on the structure of acrylic acid and N,N-methylene bisacrylamide copolymers has been investigated. Optimal conditions for the synthesis of polymers with linear, tree-like, and crosslinked macromolecular structures have been established. The properties of the synthesized polymers, namely density, degree of swelling, gel fraction, etc., were investigated. It has been shown that copolymers with crosslinked macromolecules form hydrogels, the swelling degree of which considerably depends on the synthesis conditions. For copolymers forming hydrogels, the density of crosslinking units was determined based on the dependence of the density and equilibrium swelling degree.

1. Doppalapudi, S., Jain, A., Khan, W., Domb, A.J. (2014) Biodegradable polymers-an overview. Polym. Adv. Technol. 25, 427-435. https://doi.org/10.1002/pat.3305
https://doi.org/10.1002/pat.3305
2. Mallawarachchi, S., Mahadevan, A., Gejji, V., Fernando, S. (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv. Transl. Res. 9, 783-794. DOI: 10.1007/s13346-019-00620-7
https://doi.org/10.1007/s13346-019-00620-7
3. Arkaban, H., Barani, M., Akbarizadeh, MR., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., Zarrintaj, P. (2022) Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 14(6),1259. doi: 10.3390/polym14061259
https://doi.org/10.3390/polym14061259
4. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
https://doi.org/10.3390/gels3010006
5. Ganeswar, Dalei., Subhraseema, Das. (2022) Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology. 78, 103988. https://doi.org/10.1016/j.jddst.2022.103988
https://doi.org/10.1016/j.jddst.2022.103988
6. Jeon, I.-Y., Noh, H.-J., Baek, J.-B. (2018) Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 23, 657. https://doi.org/10.3390/molecules23030657
https://doi.org/10.3390/molecules23030657
7. Niamh, Bayliss., Bernhard, V.K.J. Schmidt, (2023). Hydrophilic polymers: Current trends and visions for the future, Progress in Polymer Science. 147, 101753. DOI: 10.1016/j.progpolymsci.2023.101753
https://doi.org/10.1016/j.progpolymsci.2023.101753
8. Zenoozi, S., Sadeghi, G.M.M., Rafiee, M. (2020). Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur. Polym. J. 140, 109974. https://doi.org/ 10.1016/j.eurpolymj.2020.109974
https://doi.org/10.1016/j.eurpolymj.2020.109974
9. Yee, S.Y.Y. (2021). Medicinal properties of bioactive compounds and antioxidant activity in Durio zibethinus. Malays. J. Sustain. Agric. (MJSA). 5, 82-89. DOI: 10.26480/mjsa.02.2021.82.89
https://doi.org/10.26480/mjsa.02.2021.82.89
10. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
https://doi.org/10.3390/biom10081169
11. Swilem, A.E, Elshazly, A.H.M, Hamed, A.A, Hegazy, E.A, Abd El-Rehim, H.A. (2020) Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726
https://doi.org/10.1016/j.msec.2020.110726
12. Koetting, M.C., Guido, J.F., Gupta, M., Zhang, A., Peppas, N.A. (2016) pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 221, 18-25. doi: 10.1016/j.jconrel.2015.11.023
https://doi.org/10.1016/j.jconrel.2015.11.023
13. Caló, E., Khutoryanskiy, V.V.(2015). Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polymer Journal, 65, 252-267. DOI: 10.1016/j.eurpolymj.2014.11.024
https://doi.org/10.1016/j.eurpolymj.2014.11.024
14. Maikovych, O., Nosova, N., Bukartyk, N., Fihurka, N., Ostapiv, D., Samaryk, V., Pasetto, P., & Varvarenko, S. (2023). Gelatin-based hydrogel with antiseptic properties: Synthesis and properties. Applied Nanoscience, 13(12), 7611-7623. https://doi.org/10.1007/s13204-023-02956-6
https://doi.org/10.1007/s13204-023-02956-6
15. Flory P.J. (1953) Principles of polymer chemistry. N.Y.: Cornell Univ. Press. 672.
16. Worsfold, D.J. (1974) Effect of chain interpenetration on polymer-polymer interaction in solution. J Polym Sci Part A-1 Polym Chem. 12(2), 337-345. https://doi.org/10.1002/pol.1974.170120207
https://doi.org/10.1002/pol.1974.170120207
17. Flory, P.J., Rehner, B.D. (1943) Statistical mechanics of cross-linked polymer networks. J. Chem. Phys, 11, 521-526. https://doi.org/10.1063/1.1723792
https://doi.org/10.1063/1.1723792