Nanoparticles of spinel MgMn2O4 were synthesized using the co-precipitation method in an ultrasonic field. It was established that at a calcination temperature of 200 °C, all peaks on the diffractogram of the synthesized material corresponded to spinel MgMn2O4 with a cubic lattice, pronounced crystallinity, and the absence of other phases. As the calcination temperature increased, the formation of new phases – Mn oxides (respectively, Mn5O8 and Mn2O3) – was recorded. The average size of MgMn2O4 particles was calculated from the diffraction peaks using the Debye-Scherrer equation and equated to 24.4 nm at a calcination temperature of 200 °C. An increase in the specific power of the ultrasonic processing of the reaction medium revealed a natural increase in the proportion of the amorphous phase and a decrease in the average size of MgMn2O4 particles.
1. Yu, J., Qiu, W., Lin, X., Wang, Y., Lu, X., Yu, Y., …Ma, J. (2023). Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chemical Engineering Journal, 459, 141574. doi: 10.1016/j.cej.2023.141574
https://doi.org/10.1016/j.cej.2023.141574
2. Iranmanesh, P., Saeednia, S., Mehran, M., & Rashidi Dafeh, S. (2017). Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. Journal of Magnetism and Magnetic Materials, 425, 31-36. doi: 10.1016/j.jmmm.2016.10.105
https://doi.org/10.1016/j.jmmm.2016.10.105
3. Akhlaghi, N., & Najafpour-Darzi, G. (2021). Manganese ferrite (MnFe2O4) nanoparticles: From synthesis to application - A review. Journal of Industrial and Engineering Chemistry, 103, 292-304. doi: 10.1016/j.jiec.2021.07.043
https://doi.org/10.1016/j.jiec.2021.07.043
4. Chaudhari, A., Kaida, T., Desai, H. B., Ghosh, S., Bhatt, R. P., & Tanna, A. R. (2022). Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 5, 100098. doi: 10.1016/j.chphi.2022.100098
https://doi.org/10.1016/j.chphi.2022.100098
5. Rodiah, S., & Ramadhani, E. (2022). Highly efficient removal of methylene blue dye from wastewater using CaO-MnFe2O4 nanoparticles prepared with teak leaf extract. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 9(2), 62-67. doi: 10.15575/ak.v9i2.20068
https://doi.org/10.15575/ak.v9i2.20068
6. Thao, L. T., Nguyen, T. V., Nguyen, V. Q., Phan, N. M., Kim, K. J., Huy, N. N., & Dung, N. T. (2023). Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. Journal of Environmental Sciences, 124, 379-396. doi: 10.1016/j.jes.2021.10.008
https://doi.org/10.1016/j.jes.2021.10.008
7. Jacintha, A. M., Umapathy, V., Neeraja, P., & Rajkumar, S. R. J. (2017). Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. Journal of Nanostructure in Chemistry, 7, 375-387. doi: 10.1007/s40097-017-0248-z
https://doi.org/10.1007/s40097-017-0248-z
8. Liu, H., Dai, X., Kong, L., Sui, C., Nie, Z., Liu, Y., ...Zhan, J. (2023). Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation. Chemical Engineering Journal, 467, 143339. doi: 10.1016/j.cej.2023.143339
https://doi.org/10.1016/j.cej.2023.143339
9. Sui, C., Nie, Z., Liu, H., Boczkaj, G., Liu, W., Kong, L., & Zhan, J. (2024). Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater. Journal of Environmental Sciences, 135, 86-96. doi: 10.1016/j.jes.2023.01.010
https://doi.org/10.1016/j.jes.2023.01.010
10. Wu, S., Qin, H., Cheng, H., Shi, W., Chen, J., Huang, J., & Li, H. (2022). A novel MnFe2O4-HSO3 nanocatalyst for heterogeneous Fenton degradation of antibiotics. Catalysis Communications, 171, 106522. doi: 10.1016/j.catcom.2022.106522
https://doi.org/10.1016/j.catcom.2022.106522
11. Qin, H., Yang, Y., Shi, W., & She, Y. (2021). Heterogeneous Fenton degradation of ofloxacin catalyzed by magnetic nanostructured MnFe2O4 with different morphologies. Environmental Science and Pollution Research, 28, 26558-26570. doi: 10.1007/s11356-021-12548-y
https://doi.org/10.1007/s11356-021-12548-y
12. Junlabhuta, P., Nuthongkuma, P., & Pechrapab, W. (2018). Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials. Materials Today: Proceedings, 5(6), 13857-13864. doi: 10.1016/j.matpr.2018.02.028
https://doi.org/10.1016/j.matpr.2018.02.028
13. Ghatreh-Samani, R., & Mostafaei, A. (2014). Chemical co-precipitation synthesis of spinel manganese ferrite nanoparticles (MnFe2O4): Morphological characterizations and magnetic properties. Journal of Magnetism and Magnetic Materials, 11.005. doi: 10.1016/j.jmmm.2014.11.005
https://doi.org/10.1016/j.jmmm.2014.11.005
14. Aghrich, K., Mtougui, S., Goumrhar, F., Abdellaoui, M., Mamouni, N., Fekhaoui, M., …Mounkachi, O. (2022). Experimental and theoretical investigation of the synthesis, electronic and magnetic properties of MnFe2O4 spinel ferrite. Energies, 15, 8386. doi: 10.3390/en15228386
https://doi.org/10.3390/en15228386
15. Rafique, M. Y., Li-Qing, P., Javed, Q., Iqbal, M. Z., Hong-Mei, Q., Farooq, M. H., & Tanveer, M. (2013). Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chinese Physics B, 22(10), 107101. doi: 10.1088/1674-1056/22/10/107101
https://doi.org/10.1088/1674-1056/22/10/107101
16. Yavors'kyi, V. T., Znak, Z. O., Sukhats'kyi, Y. V., Mnykh, R. V. (2017). Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Materials Science, 52(4), 595-600. doi: 10.1007/s11003-017-9995-8
https://doi.org/10.1007/s11003-017-9995-8