SORPTION-DIFFUSION PROPERTIES OF MODIFIED HYDROGEL POLYVINYLPYRROLIDONE-CONTAINING MEMBRANES

2024;
: 198-205
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Technical University of Kosice (Slovakia)

The efficiency of using solutions based on mixtures of polyamide with polyvinylpyrrolidone (PVP) in formic acid as modifiers of highly permeable hydrogel membranes based on copolymers of PVP with 2-hydroxyethyl methacrylate was established. The modification ensures the formation of composite membranes with strengthened selectively permeable nano- and microlayers. The possibility of predictable regulation of the sorption-diffusion properties of composite hydrogel membranes by selecting the composition and concentration of the modifying solution and the composition of the hydrogel film substrate is shown.

1. Madduma‐Bandarage, U.S.K.; Madihally, S.V. (2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376. https://doi.org/10.1002/app.50376.

2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels—From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C.E., Eds.; IntechOpen: London, UK, 2023. https://doi.org/10.5772/intechopen.108767.

3. Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. (2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.

 https://doi.org/10.1007/s10924-021-02184-5.

4. Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188.

5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696.

6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171.

7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.

8. Taaca, K.L.M.; Prieto, E.I.; Vasquez, M.R., Jr. (2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers, 14, 2560. https://doi.org/10.3390/polym14132560.

9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R. (2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576. https://doi.org/10.3390/membranes13060576.

10. Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.

11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V. (2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8.

12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063. https://doi.org/10.3390/membranes12111063.

13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290. https://doi.org/10.3390/polym15153290.

14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060.

15. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19

16. Baran, N.M.; Grytsenko, T.O.: Dulebova, L. (2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132-138.

17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci., 53, 392–397.

18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for high-performance nanofiltration membranes. Desalination, 564, 116767. https://doi.org/10.1016/j.desal.2023.116767.

19. Peng, L.E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C.Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871.

20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination, 417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011.

21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.

22. Zawada, A.M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J.P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932.

23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018; pp. 136–214. https://doi.org/10.5772/intechopen.72082.

24. Suberlyak, O., Grytsenko, O., Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.

25. Baran, N.М.; Grytsenko, О.М.; Moravskyi, V.S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances, 5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171.