The efficiency of using solutions based on mixtures of polyamide with polyvinylpyrrolidone (PVP) in formic acid as modifiers of highly permeable hydrogel membranes based on copolymers of PVP with 2-hydroxyethyl methacrylate was established. The modification ensures the formation of composite membranes with strengthened selectively permeable nano- and microlayers. The possibility of predictable regulation of the sorption-diffusion properties of composite hydrogel membranes by selecting the composition and concentration of the modifying solution and the composition of the hydrogel film substrate is shown.
1. Madduma‐Bandarage, U.S.K.; Madihally, S.V. (2020). Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 138, e50376. https://doi.org/10.1002/app.50376.
2. Popa, L.; Violeta Ghica, M.; Elena Dinu-Pîrvu, C.; Tudoroiu, E.-E. Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels—From Tradition to Innovative Platforms with Multiple Applications; Popa, L., Violeta Ghica, M., Dinu-Pîrvu, C.E., Eds.; IntechOpen: London, UK, 2023. https://doi.org/10.5772/intechopen.108767.
3. Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. (2021). Hydrogels: Synthesis, classification, properties and potential applications. A brief review. J. Polym. Environ. 29, 3827–3841.
https://doi.org/10.1007/s10924-021-02184-5.
4. Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 12, 1188. https://doi.org/10.3390/pharmaceutics12121188.
5. Chen, Q.; He, Y.; Li, Q.; Yang, K.; Sun, L.; Xu, H.; Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun., 53, 100696. https://doi.org/10.1016/j.colcom.2023.100696.
6. Li, X.; Xu, M.; Geng, Z.; Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Front. Bioeng. Biotechnol., 11, 1190171. https://doi.org/10.3389/fbioe.2023.1190171.
7. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
8. Taaca, K.L.M.; Prieto, E.I.; Vasquez, M.R., Jr. (2022). Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers, 14, 2560. https://doi.org/10.3390/polym14132560.
9. Trombino, S.; Sole, R.; Curcio, F.; Cassano, R. (2023). Polymeric based hydrogel membranes for biomedical applications. Membranes, 13, 576. https://doi.org/10.3390/membranes13060576.
10. Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. (2015). Regularities of preparation and properties of hydrogel membranes. Mater. Sci., 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.
11. Suberlyak, O.; Melnyk, J.; Skorokhoda, V. (2009). Formation and properties of hydrogel membranes based cross-linked copolymers of methacrylates and water-soluble polymers. Eng. Biomater., 12, 5–8.
12. Nazari, S.; Abdelrasoul, A. (2022). Impact of membrane modification and surface immobilization techniques on the hemocompatibility of hemodialysis membranes: A critical Review. Membranes, 12, 1063. https://doi.org/10.3390/membranes12111063.
13. Zhang, Q.; Zhou, R.; Peng, X.; Li, N.; Dai, Z. (2023). Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment. Polymers, 15, 3290. https://doi.org/10.3390/polym15153290.
14. Lv, H.; Wang, X.; Fu, Q.; Si, Y.; Yin, X.; Li, X.; Sun, G.; Yu, J.; Ding, B. (2017) A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci., 506, 442–451. https://doi.org/10.1016/j.jcis.2017.07.060.
15. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121–126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
16. Baran, N.M.; Grytsenko, T.O.: Dulebova, L. (2023). The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength. Chemistry, technology and application of substances, 6(2), 132-138.
17. Suberlyak, O.; Baran, N.; Yatsul’chak, H. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Mater. Sci., 53, 392–397.
18. Li, Z.; Peng, S.; Zhang, W.; Zhang, J.; Jiao, Y.; Li, R.; Shen, L.; Lin, H.; Xu, Y. (2023). Innovative role of polyvinylpyrrolidone in tailoring polyamide layer for high-performance nanofiltration membranes. Desalination, 564, 116767. https://doi.org/10.1016/j.desal.2023.116767.
19. Peng, L.E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C.Y. (2022). A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J. Membr. Sci., 641, 119871. https://doi.org/10.1016/j.memsci.2021.119871.
20. Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. (2017). Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination, 417, 19–35. https://doi.org/10.1016/j.desal.2017.05.011.
21. Sobczak-Kupiec, A.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Cylka, K.; Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468.
22. Zawada, A.M.; Lang, T.; Ottillinger, B.; Kircelli, F.; Stauss-Grabo, M.; Kennedy, J.P. (2022). Impact of hydrophilic modification of synthetic dialysis membranes on hemocompatibility and performance. Membranes, 12, 932. https://doi.org/10.3390/membranes12100932.
23. Suberlyak, O.; Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018; pp. 136–214. https://doi.org/10.5772/intechopen.72082.
24. Suberlyak, O., Grytsenko, O., Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
25. Baran, N.М.; Grytsenko, О.М.; Moravskyi, V.S. (2022). Influence of polyvinylpyrrolidone molecular weight on the sorption and physical-mechanical properties of hydrogel/polycaproamide two-layer membranes. Chemistry, technology and application of substances, 5(2), 171–177. https://doi.org/10.23939/ctas2022.02.171.