A NEW OBTAINING METHOD OF TUBULAR PRODUCTS BASED ON POLYMER GELS

2021;
: 195-202
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Technical University of Kosice (Slovakia)
4
Lviv Polytechnic National University

The method for obtaining composite hydrogel tubular products with the increased strength on the basis of copolymers of 2-hydroxyethylmethacrylate with polyvinylpyrrolidone has been developed. The method consists in the formation of hydrogel tubes with a subsequent precipitation from the solution into their outer surface of the reinforced layer based on polyamide, modified with polyvinylpyrrolidone. The obtained composite hydrogel tubes are characterized by the sufficient strength, resilience, elasticity, as well as the ability to withstand an internal pressure within 24‒43 kPa (180‒320 mm Hg).

1. Popova I. V., Stepanova A. O., Sergeevichev D. S., Akulov A. E., Zakharova I. S., Pokushalov A. A., Laktionov P. P., Karpenko A. A. (2015) Comparative study of three vascular grafts produced by electrospinning in vitro and in vivo. Patologiya krovoobrashcheniya i kardiokhirurgiya, 19(4), 63-71. [in Russian].
2. Khlif H., Abdessalem S. B., Dhouib S., Sakli F. (2011). Contribution to the Improvement of Textile Vascular Prostheses Crimping. Trends in Applied Sciences Research, 6, 1019-1027. DOI: 10.3923/tasr.2011.1019.1027.
https://doi.org/10.3923/tasr.2011.1019.1027
3. Marzougui S., Abdessalem S. B., Sakli, F. (2009). Viscoelastic behavior of textile artificial ligaments / S. Marzougui, S. B. Abdessalem, F. Sakli. J. Applied Sci, 9, 2794-2800. https://DOI: 10.3923/jas.2009.2794.2800.
https://doi.org/10.3923/jas.2009.2794.2800
4. Grasl C., Bergmeister H., Stoiber M., Schima H., Weigel G. (2010). Electrospun polyurethane vascular grafts: In vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res., 93A, 716-723. https://doi.org/10.1002/jbm.a.32584.
https://doi.org/10.1002/jbm.a.32584
5. Chlupác J., Filová E., Bacáková L. (2010). Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy. Rozhledy, 89, 85-94.
6. Khan S., Ullah A., Ullah K., Rehman N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456-478. http://dx.doi.org/10.1080/15685551.2016.1169380.
https://doi.org/10.1080/15685551.2016.1169380
7. Jumadilov T., Abilov Z., Kondaurov R., Himersen H., Yeskalieva G., Akylbekova M., Akimov A. (2015). Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chemistry & Chemical Technology, 9(4), 459-462. DOI: https://doi.org/10.23939/chcht09.04.459
https://doi.org/10.23939/chcht09.04.459
8. Gibas I., Janik H. (2010). Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chemistry & Chemical Technology, 4(4), Р. 297-304.
https://doi.org/10.23939/chcht04.04.297
9. Suberlyak O., Skorokhoda V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136-214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
https://doi.org/10.5772/intechopen.72082
10. Grytsenko O. M., Hnatchuk N. M., Suberlyak O. V. (2013). Vplyv initsiyuvalʹnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy - Eastern-European Journal of Enterprise Technologies, 5/8(65), 59-63. [in Ukrainian].
11. Skorokhoda V. (2010). Matrix polymerization of 2-Hydroxyethylmethacrylate in the presence of polyvinylpyrrolidone in permanent magnetic field. Chemistry & Chemical Technology, 4, 191-196.
https://doi.org/10.23939/chcht04.03.191
12. Suberlyak O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236-238. [in Ukrainian].
13. Montheard J., Chatzopoulos M., Chappard D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1-34. https://doi.org/10.1080/15321799208018377.
https://doi.org/10.1080/15321799208018377
14. Yanez F., Concheiro A., Alvarez-Lorenzo C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP-pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094-1103. https://doi.org/10.1016/j.ejpb.2008.01.023.
https://doi.org/10.1016/j.ejpb.2008.01.023
15. malešić n., rusmirović j., jovašević j. (2014). Antimicrobial Hydrogels Based on 2-hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563-568. DOI: 10.5937/tehnika1404563M.
https://doi.org/10.5937/tehnika1404563M
16. Prasitsilp M., Siriwittayakorn T., Molloy R.,  Suebsanit N., Siriwittayakorn  P., Veeranondha S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595-600. https://doi.org/10.1023/A:1024066806347.
https://doi.org/10.1023/A:1024066806347
17. Teodorescu M., Bercea M. (2015). Poly(vinylpyrrolidone) - a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923-943. https://doi.org/10.1080/03602559.2014.979506.
https://doi.org/10.1080/03602559.2014.979506
18. Reverberi A., Salerno M., Lauciello S., Fabiano B. (2016). Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium (+2) salts. Materials, 9, 809-820. https://doi.org/10.3390/ma9100809.
https://doi.org/10.3390/ma9100809
19. Grytsenko O. M., Hayduk A. V., Bedlʹovsʹka Kh. M., Gaydos I. (2016). Strukturni kharakterystyky khimichno vidnosnoho nikelyu yak napovnyuvacha polimernykh hidroheliv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 841, 351-357. [in Ukrainian].
20. Fan M., Zhang L., Wang R., Guo H., Jia S. (2017). Facile and controllable synthesis of iron nanoparticles directed by montmorillonite and polyvinylpyrrolidone. Applied Clay Science, 144, 1-8. http://dx.doi.org/10.1016/j.clay.2017.04.022.
https://doi.org/10.1016/j.clay.2017.04.022
21. Bashtyk Y., Fechan A., Grytsenko O., Hotra Z., Kremer I., Suberlyak O., Aksimentyeva O., Horbenko Y., & Kotsarenko, M. (2019). Electrical elements of the optical systems based on hydrogel - electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672(1), 150-158. DOI:10.1080/15421406.2018.1550546.
https://doi.org/10.1080/15421406.2018.1550546
22. Grytsenko O. M., Skorokhoda V. Y., Shapoval P. Y., Bukhvak I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 414, 82-85. [in Ukrainian].
23. Suberlyak  О. V., Baran  N. M., Yatsul'chak H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53, 392-397. https://doi.org/10.1007/s11003-017-0087-6
https://doi.org/10.1007/s11003-017-0087-6
24. Suberlyak О., Grytsenko O., Hischak Kh., Hnatchuk N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289-294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
https://doi.org/10.23939/chcht07.03.289
25. Roy N., Saha N.: PVP-based hydrogels: synthesis, properties and applications [in:] F. V. Câmara and L. J. Ferreira (Ed.), Hydrogels: Synthesis, Characterization and Applications. Nova Science, Hauppauge, NY, USA, 2012, 227-252.
26. Grytsenko O. M., Naumenko O. P., Suberlyak O. V., Dulebova L., Berezhnyy B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25-32. DOI: 10.32434/0321-4095-2019-128-1-25-32
https://doi.org/10.32434/0321-4095-2019-128-1-25-32
27. Suberlyak O., Grytsenko O., Kochubei V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
https://doi.org/10.23939/chcht09.04.429
28. Suberlyak O., Grytsenko O., Baran N., Yatsulchak G., Berezhnyy B.. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312.
https://doi.org/10.23939/chcht14.03.312
29. Grytsenko O., Spiśak Е., Dulebová L., Moravskii V., Suberlyak О. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97-101. https://doi.org/10.4028/www.scientific.net/MSF.818.97.
https://doi.org/10.4028/www.scientific.net/MSF.818.97
30. Suberlyak O. V., Hrytsenko O. M., Hishchak K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155-164. https://doi.org/10.1007/s11003-016-9938-9.
https://doi.org/10.1007/s11003-016-9938-9
31. Sousa J. V., Antunes L., Mendes C., Marinho A., Gonçalves A., Gonçalves Ó., Matos, A. (2014). Prosthetic vascular graft infections: A center experience. Angiologia e Cirurgia Vascular, 10(2), 52-57. https://doi.org/10.1016/S1646-706X(14)70050-3.
https://doi.org/10.1016/S1646-706X(14)70050-3