Еvaluation of cytotoxicity of heterocyclic aminocontaining 1,4-naphthoquinone derivatives

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The cytotoxic activity of heterocyclic amino-containing derivatives of 1,4-naphthoquinone in vitro on various human breast cancer lines, namely: MDA-MB, MCF-7, SK-BR-3, BT-474 and non-cancerous cell lines (MCF-10A) was investigated. In silico prediction of toxicity of the test substances for rats was performed using modern software ProTox-II. It was established that all studied compounds belong to toxicity classes IV and VI and are of low toxicity. It was determined that heterocyclic amino-containing derivatives of 1,4-naphthoquinone can be used as potent anticancer agents with cytotoxic activity against MCF-7 and MDA-MB-231.

  1. Cabasag, C. J., Fagan, P. J., Ferlay, J., Vignat, J., Laversanne, M., Liu, L., ... & Soerjomataram, I. (2022). Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN.  International Journal of Cancer151(9), 1535-1541.  https://doi.org/10.1002/ijc.34002
  2. Mancini, I., Vigna, J., Sighel, D., & Defant, A. (2022). Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules27(15), 4948. https://doi.org/10.3390/molecules27154948
  3. Alam, M. J., Alam, O., Perwez, A., Rizvi, M. A., Naim, M. J., Naidu, V. G., ... & Shakeel, F. (2022). Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals15(3), 280. https://doi.org/10.3390/ph15030280
  4. Wellington, K. W., Kolesnikova, N. I., Nyoka, N. B., & McGaw, L. J. (2019). Investigation of the antimicrobial and anticancer activity of aminonaphthoquinones. Drug Development Research80(1), 138-146.  https://doi.org/10.1002/ddr.21477
  5. Ansari, A., Ali, A., & Asif, M. (2017). Biologically active pyrazole derivatives. New Journal of Chemistry41(1), 16-41. https://doi.org/10.1039/C6NJ03181A 
  6. Renneberg, B., Li, Y. M., Laatsch, H., & Fiebig, H. H. (2000). A short and efficient transformation of rhamnose into activated daunosamine, acosamine, ristosamine and epi-daunosamine derivatives, and synthesis of an anthracycline antibiotic acosaminyl-ε-iso-rhodomycinone. Carbohydrate Research329(4), 861-872. https://doi.org/10.1016/S0008-6215(00)00257-3
  7. Shakya, P., & Sharma Nepal, A. (2021). Daunorubicin induced Stevens‐Johnson syndrome: A case report. Clinical Case Reports9(7), e04475.  https://doi.org/10.1002/ccr3.4475
  8.  Qiu, H. Y., Wang, P. F., Lin, H. Y., Tang, C. Y., Zhu, H. L., & Yang, Y. H. (2018). Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chemical biology & drug design91(3), 681-690.  https://doi.org/10.1111/cbdd.13141
  9. Ibis, C., Sahinler Ayla, S., & Yavuz, S. (2019). Reactions of quinones with some aryl phenols and synthesis of new quinone derivatives. Synthetic Communications49(2), 202-211. https://doi.org/10.1080/00397911.2018.1546403
  10. Piñeros, M., Mery, L., Soerjomataram, I., Bray, F., & Steliarova-Foucher, E. (2021). Scaling up the surveillance of childhood cancer: a global roadmap. JNCI: Journal of the National Cancer Institute113(1), 9-15.  https://doi.org/10.1093/jnci/djaa069
  11. Bennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., & Faouzi, M. E. A. (2020). Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorganic Chemistry97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470
  12. Ibrahim, S. A., Rizk, H. F., El-Borai, M. A., & Sadek, M. E. (2021). Green routes for the synthesis of new pyrazole bearing biologically active imidiazolyl, pyridine and quinoxaline derivatives as promising antimicrobial and antioxidant agents. Journal of the Iranian Chemical Society18, 1391-1404.
  13. Li, W., Zhang, J., Wang, M., Dong, R., Zhou, X., Zheng, X., & Sun, L. (2022). Pyrimidine-fused dinitrogenous penta-heterocycles as a privileged scaffold for anti-cancer drug discovery. Current Topics in Medicinal Chemistry22(4), 284-304. https://doi.org/10.2174/1568026622666220111143949
  14. Sanachai, K., Mahalapbutr, P., Tabtimmai, L., Seetaha, S., Kaekratoke, N., Chamni, S., ... & Rungrotmongkol, T. (2023). In Silico and In Vitro Study of Janus Kinases Inhibitors from Naphthoquinones. Molecules28(2), 597.  https://doi.org/10.3390/molecules28020597
  15. Polish, N., Nesterkina, M., Marintsova, N., Karkhut, A., Kravchenko, I., Novikov, V., & Khairulin, A. (2020). Synthesis and evaluation on anticonvulsant and antidepressant activities of naphthoquinone derivatives containing pyrazole and pyrimidine fragments. Acta Chimica Slovenica67(3), 934-939. https://doi.org/10.17344/acsi.2020.5938
  16. Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic acids research46(W1), W257-W 263.   https://doi.org/10.1093/nar/gky318
  17. Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic acids research42(W1), W53-W58. https://doi.org/10.1093/nar/gku401
  18. Dawood, D. H., Nossier, E. S., Ali, M. M., & Mahmoud, A. E. (2020). Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorganic Chemistry101, 103916. https://doi.org/10.1016/j.bioorg.2020.103916
  19. Bułakowska, A., Sławiński, J., Siedlecka-Kroplewska, K., Stasiłojć, G., Serocki, M., & Heldt, M. (2020). Novel N-(aryl/heteroaryl)-2-chlorobenzenesulfonamide derivatives: Synthesis and anticancer activity evaluation. Bioorganic Chemistry104, 104309. https://doi.org/10.1016/j.bioorg.2020.104309
  20. Polish, N. V., Marintsova, N. H., Zhurakhivsʹka, L. R., Novikov, V. P., & Vovk, M. V. (2019). Syntez ta prohnozuvannya biolohichnoyi aktyvnosti novykh heterotsyklichnykh N-pokhidnykh naftokhinonu. Chemistry, Technology and Application of Substances, Vol. 2, №1, 69-75. https://doi.org/10.23939/ctas2019.01.069