Іnfluence of morphology on the biodegradability of plasticized polymer composites

2025;
: 191-198
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin
5
Lviv Polytechnic National University

The impact of modifiers of different origins on the biodegradability of polylactide-based materials was investigated. It was found that incorporating starch and epoxidized soybean oil into the polylactide matrix accelerates the biodegradation of the polymer composite. The effect of starch and epoxidized soybean oil on intermolecular interactions within the system was examined. Based on X-ray structural analysis and scanning electron microscopy, it was determined that increasing the content of epoxidized soybean oil and starch in the polylactide matrix reduces crystallinity, enhances the amorphous characteristics of the material, and promotes the formation of materials with a more complex morphology.

1.  Jung, H., Shin, G., Kwak, H., Hao, L. T., Jegal, J., Kim, H. J., Jeon, H., Park, J., Oh, D. X. (2023) Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste.  Chemosphere, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023. 138089. 

2.  Smith, J., Collins, H. P. (2007) Management of organisms and their processes in soils. Soil Microbiology, Ecology and Biochemistry (Third Edition), 471–502. https://www.sciencedirect.com/science/article/abs/pii/ B9780080475141500214. 

3.  Manea, E. E., Bumbac, C., Dinu, L. R., Bumbac, M., Nicolescu, C. M. (2024) Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements.  Sustainability, 16 (15), 6329. https://doi.org/10.3390/su16156329. 

4.  Nemet, F., Perić, K., Lončarić, Z. (2021) Microbiological activities in the composting process: A review. Columella Journal of Agricultural and Environmental Sciences, 8 (2), 41–53. DOI:10.18380/SZIE.COLUM.2021.8.2.41. 

5.  Deeraj, B. D. S., Jayan, J. S., Saritha, A., Joseph, K. (2022) PLA-based blends and composites. Biodegradable Polymers, Blends and Composites, 237– 281. https://doi.org/10.1016/B978-0-12-823791-5.00014-4. 

6.  Naser, A. Z., Deiab, I., Darras, B. M. (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review.  RSC Adv., 11, 17151–17196. https://doi.org/ 10.1039/D1RA02390J. 

7.  Naser, A. Z., Deiab, I., Defersha, F., Yang, S. (2021) Expanding poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: A review on modifications and effects.  Polymers, 13, 4271. https://doi.org/10.3390/polym13234271. 

8.  Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T.T., Wang, Y. (2023) Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports.  Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096. 

9.  Zaaba, N. F., Jaafar, M. (2020) A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci., 60, 2061–2075. https://doi.org/10.1002/ pen.25511. 

10.   Piemonte, V., Gironi, F. (2013) Kinetics of Hydrolytic Degradation of PLA.  J. Polym. Environ., 21, 313–318. https://doi.org/10.1007/s10924-012-0547-x. 

11.   Lyu, L., Bagchi, M., Tsun, K., Ng, W., Markoglou, N., Chowdhury, R., An, C., Chen, Z., Yang, X. (2024) The degradation of polylactic acid face mask components in different environments. J. Environ. Manag., 370, 122731. https://doi.org/10.1016/j.jenvman.2024.122731. 

12.   Kechur, D., Masyuk, A., Katruk, D., Kulish, B., Levytskyi, V. (2024) Combined composites based on polylactide 3D materials and polyurethane.  Chemistry, Technology and Application of Substances, 7(2), 213–218. https://doi.org/10.23939/ctas2024.02.213. 

13.  Jung, H., Shin, G., Kwak, H., Hao, L. T., Jegal, J., Kim, H. J., Jeon, H., Park, J., Oh D. X. (2023) Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste.  Chemosphere, 320, 138089. https://doi.org/10.1016/j.chemosphere.2023.138089. 

14.   Masyuk, A. S., Kysil, Kh. V., Skorokhoda, V. I., Katruk, D. S., Kulish, B. I., Levytskyi, V. (2020) Osoblyvosti oderzhannia i vlastyvosti binarnykh sumishiv polilaktydiv. Ohliad.  Chemistry, Technology and Application of Substances, 3(2), 146–156. Lviv: Vyd-vo Lvivskoi politekhniky. 

15.   Masyuk, A. S., Kechur, D. I., Kysil, K. V., Kulish, B. I., Levytskyi, V. Y. (2023) Physico-chemical interactions in plasticized starch materials.  Chemistry, Technology and Application of Substances, 6, 124. https://doi.org/10.23939/ctas2023.01.124. 

16.   Rapa, M., Nita, R. N. D., Vasile, C. (2017) Influence of plasticizers over some physico-chemical properties of PLA.  Mater. Plast., 54, 73–78. https://doi.org/10.37358/MP.17.1.4789. 

17.   Wang, F., Nan, Z., Sun, X., Liu, C., Zhuang, Y., Zan, J., Dai, C., Liu, Y. (2022). Characterization of degradation behaviors of PLA biodegradable plastics by infrared spectroscopy.  Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 279, 121376. https://doi.org/10.1016/j.saa.2022.121376 

18.   Masyuk, A., Levytskyi, V., Kysil, K., Bilyi, L., Humenetskyi, T. (2021). Influence of calcium phosphates on the morphology and properties of polylactide composites.  Materials Science, 56, 870–876. https://doi.org/10.1007/s11003-021-00506-5 

19.   Levytskyi, V. E., Masyuk, A. S., Bilyi, L. M., Humenetskyi, T. V., Shybanova, A. M. (2020). Influence of silicate nucleation agent modified with polyvinyl- pyrrolidone on the morphology and properties of polypropylene.  Materials Science, 55(4), 555–562. https://doi.org/10.1007/s11003-020-00338-9 

20.  Levytskyi, V., Katruk, D., Masyuk, A., Kysil, Kh., Bratychak, M. Jr., Chopyk, N. (2021). Resistance of polylactide materials to water mediums of the various natures. Chemistry & Chemical Technology, 15(2), 191–197. https://doi.org/10.23939/chcht15.02.191 

21.   Masyuk, A. S., Kechur, D. I., Kysil, K. V., Kulish, B. I., Levytskyi, V. Y. (2023). Physico-chemical interactions in plasticized starch materials.  Chemistry, Technology and Application of Substances, 6, 124. https://doi.org/10.23939/ctas2023.01.124