Bioplastics from Natural Renewable Polymeric Resources: A Review

2025;
: pp. 91 - 107
1
Coatings and Polymeric Materials Department, North Dakota State University
2
Coatings and Polymeric Materials Department, North Dakota State University
3
Coatings and Polymeric Materials Department, North Dakota State University
4
North Dakota State University

Petroleum-based plastics are durable, flexible, cheap, and widely available, thus remain increasingly in demand by the growing global population. However, being non-biodegradable, conventional plastics (especially single-use products and materials) end-life scenarios pose continuous threats to the environment, including animal and human health. An estimated 20 million metric tons of disposable plastic litter are introduced into the environment annually. Despite recent global initiatives, recycling rates remain low due to underdeveloped infrastructure and a lack of international standardization. Only about 9% of plastic waste has been recycled globally, primarily by mechanical recycling, and around 12% is incinerated (quaternary recycling). About 79% of the annual production volume of petroleum-based plastics, generated by both developing and developed countries, end up in landfills and oceans globally. Being manufactured from different natural renewable polymeric resources, bioplastics, as sustainable alternatives, have several advantages over their commodity fossil-based counterparts. In particular, bioplastics contribute to lowering carbon footprint, may show valuable and unique thermomechanical and physical properties and performance, are versatile, energy-efficient, and, most importantly, often possess inherent biodegradability. This review discusses the bioplastics from selected plant-derived biopolymers - celluloses, starch (and their derivatives), and plant proteins. Chemistry, advantages, and challenges, as well as some applications of resulting polymeric materials thereof, are assessed.

  1. [1]       Feldman, D. Polymer History. Des. Monomers Polym. 2008, 11, 1–15. https://doi.org/10.1163/156855508X292383
  2. [2]       Kazemi, M.; Fini, E.H. State of the Art in the Application of Functionalized Waste Polymers in the Built Environment. Resour. Conserv. Recycl. 2022, 177, 105967. https://doi.org/10.1016/j.resconrec.2021.105967
  3. [3]       Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Khan, K.; Nazir, S. Plastic Waste as a Significant Threat to Environment – A Systematic Literature Review. Rev. Environ. Health 2018, 33, 383–406. https://doi.org/10.1515/reveh-2017-0035
  4. [4]       Laskar, N.; Kumar, U. Plastics and Microplastics: A Threat to Environment. Environ. Technol. Innov. 2019, 14, 100352. https://doi.org/10.1016/j.eti.2019.100352
  5. [5]       Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. https://doi.org/10.1126/sciadv.1700782
  6. [6]       Plastics Europe - the Facts 2021. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed 2025-01-25).
  7. [7]       Ferreira-Filipe, D.A.; Paço, A.; Duarte, A.C.; Rocha- Santos, T.; Silva, A.L.P. Are Biobased Plastics Green Alternatives?—A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 7729. https://doi.org/10.3390/ijerph18157729
  8. [8]      Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. https://doi.org/10.3390/ijms10093722
  9. [9]       Goswami, P.; O’Haire, T. Developments in the Use of Green (Biodegradable), Recycled and Biopolymer Materials in Technical Nonwovens. Adv. Tech. Nonwovens 2016, 97–114. https://doi.org/10.1016/B978-0-08-100575-0.00003-6
  10. [10]     Agency, U.S.E.P. Plastics: Material-Specific Data. https://www.epa.gov/facts-andfigures-about-materials-waste-and- recycling/plastics-material-specific-data (accessed 2025-02-10).
  11. [11]      Zimmermann, L.; Bartosova, Z.; Braun, K.; Oehlmann, J.; Völker, C.; Wagner, M. Plastic Products Leach Chemicals That Induce In VitroToxicity under Realistic Use Conditions. Environ. Sci. Technol. 2021, 55, 11814–11823.https://doi.org/10.1021/acs.est.1c01103
  12. [12]     Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. https://doi.org/10.1021/es401288x
  13. [13]     Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. https://doi.org/10.1002/marc.202000415
  14. [14]     Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste - A Review. Procedia Environ. Sci. 2016, 35, 701–708.https://doi.org/10.1016/j.proenv.2016.07.069
  15. [15]     Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. https://doi.org/10.1038/s41578-021-00407-8
  16. [16]     Shah, M.; Rajhans, S.; Pandya, H.A.; Mankad, A.U. Bioplastic for Future: A Review Then and Now. World J. Adv. Res. Rev. 2021, 9, 056-067.https://doi.org/10.30574/wjarr.2021.9.2.0054
  17. [17]     Bhagwat, G.; Gray, K.; Wilson, S.P.; Muniyasamy, S.; Vincent, S.G.T.; Bush, R.; Palanisami, T. Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. J. Polym. Environ. 2020, 28, 3055–3075. https://doi.org/10.1007/s10924-020-01830-8
  18. [18]     Storz, H.; Vorlop, K.-D. Bio-Based Plastics: Status, Challenges and Trends. Landbauforsch –Appl. Agric. Forestry Res. 2013, 63, 321–332. https://doi.org/10.3220/LBF_2013_321-332
  19. [19]     Momani, B. Assessment of the Impacts of Bioplastics: Energy Usage, Fossil Fuel Usage, Pollution, Health Effects, Effects on the Food Supply, and Economic Effects Compared to Petroleum Based Plastics. Worcester Polytechnic Institute 2009. https://digital.wpi.edu/concern/student_works/qv33rw93b?locale= en
  20. [20]     Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, V.T. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol 2023, 3, 371–399. https://doi.org/10.3390/macromol3020023
  21. [21]     Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review. Environ. Chem. Lett. 2022, 20, 379–395. https://doi.org/10.1007/s10311-021-01334-4
  22. [22]     Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.-M. Methane Production as Key to the Greenhouse Gas Budget of Thawing Permafrost. Nat. Clim. Change 2018, 8, 309– 312. https://doi.org/10.1038/s41558-018-0095-z
  23. [23]     Rujnić-Sokele, M.; Pilipović, A. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Manag. Res. 2017, 35, 132–140.https://doi.org/10.1177/0734242X16683272
  24. [24]     Pathak, S.; Sneha, C.L.R.; Mathew, B.B. Bioplastics: Its Timeline Based Scenario & Challenges. J. Polym. Biopolym.Phys. Chem. 2014, 2, 84-90. https://doi.org/10.12691/jpbpc-2-4-5
  25. [25]          Brockhaus, S.; Petersen, M.; Kersten, W. A Crossroads for Bioplastics: Exploring Product Developers' Challenges to Move beyond Petroleum-Based Plastics. J. Cleaner Prod. 2016, 127, 84–95. https://doi.org/10.1016/j.jclepro.2016.04.003
  26. [26]     Jabeen, N.; Majid, I.; Nayik, G.A. Bioplastics and Food Packaging: A Review. Cogent Food Agric. 2015, 1, 1117749. https://doi.org/10.1080/23311932.2015.1117749
  27. [27]      Hierarchical Materials. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Xu, R.; Xu, Y., Eds.; Elsevier, 2017; pp 545– 574.
  28. [28]     Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. https://doi.org/10.1007/s10924-021-02052-2
  29. [29]     Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 480–501. https://doi.org/10.3390/polysaccharides3030029
  30. [30]     Wassie, T.; Niu, K.; Xie, C.; Wang, H.; Xin, W. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha Prolifera Polysaccharide. Front. Nutr. 2021, 8, 747928. https://doi.org/10.3389/fnut.2021.747928
  31. [31]     Huang, X.; Ai, C.; Yao, H.; Zhao, C.; Xiang, C.; Hong, T.; Xiao, J. Guideline for the Extraction, Isolation, Purification, and Structural Characterization of Polysaccharides from Natural Resources. eFood 2022, 3, e37. https://doi.org/10.1002/efd2.37
  32. [32]            Wedamulla, N.E.; Wijesinghe, W.A.J.P. Application of Polysaccharides in Food Technology: A Review. Trends Carbohydr. Res. 2021, 13, 35–49. https://www.researchgate.net/publication/353924093_Application_of_Polysaccharides_in_Food_Technology_A_Review
  33. [33] Yao, Y.; Xu, B. Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry.         Polysaccharides         2022,         3,         818–830.https://doi.org/10.3390/polysaccharides3040048
  34. [34]     Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A Review on Reinforcements and Additives in Starch- Based Composites for Food Packaging. Polymers 2023, 15, 2972. https://doi.org/10.3390/polym15132972.
  35. [35]     Jiang, T.; Duan, Q.; Zhu, J.; Liu, H.; Yu, L. Starch-Based Biodegradable Materials: Challenges and Opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003
  36. [36]     Apriyanto, A.; Compart, J.; Fettke, J. A Review of Starch, a Unique Biopolymer – Structure, Metabolism and in Planta Modifications. Plant Sci. 2022, 318, 111223. https://doi.org/10.1016/j.plantsci.2022.111223
  37. [37]     Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370.https://doi.org/10.1080/10408398.2011.636156
  38. [38]     Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. https://doi.org/10.3390/polym13152484
  39. [39]     Fedoryshyn, O.; Chervetsova, V.; Yaremkevych, O.; Skril, Yu.; Khomyak, S.; Kohut A. Physico-Chemical and Microbiological Characterization of Starch-Based Biodegradable Films. Chem. Chem. Technol. 2024, 18, 417–425. https://doi.org/10.23939/chcht18.03.417
  40. [40]     Lin, D.; Zhou, W.; Zhao, J.; Lan, W.; Chen, R.; Li, Y.; Xing, B.; Li, Z.; Xiao, M.; Wu, Z. et al. Study on the Synthesis and Physicochemical Properties of Starch Acetate with Low Substitution under Microwave Assistance. Int. J. Biol. Macromol. 2017, 103, 316–326.https://doi.org/10.1016/j.ijbiomac.2017.05.056
  41. [41]     Cuenca, P.; Ferrero, S.; Albani, O. Preparation and Characterization of Cassava Starch Acetate with High Substitution Degree. Food Hydrocolloids 2020, 100, 105430. https://doi.org/10.1016/j.foodhyd.2019.105430
  42. [42]     Guan, J.; Hanna, M.A. Extruding Foams from Corn Starch Acetate and Native Corn Starch. Biomacromolecules 2004, 5, 2329–2339. https://doi.org/10.1021/bm049512m
  43. [43] Chan, H.T.; Bhat, R.; Karim, A.A. Physicochemical and Functional Properties of Ozone-Oxidized Starch. J. Agric. Food Chem. 2009, 57, 5965–5970. https://doi.org/10.1021/jf9008789
  44. [44]     Zhang, Y.-R.; Wang, X.-L.; Zhao, G.-M.; Wang, Y.-Z.Preparation and Properties of Oxidized Starch with High Degree of Oxidation. Carbohydr. Polym. 2012, 87, 2554–2562. https://doi.org/10.1016/j.carbpol.2011.11.036
  45. [45]     Soliman, A.A.A.; El-Shinnawy, N.A.; Mobarak, F. Thermal Behaviour of Starch and Oxidized Starch. Thermochim. Acta 1997, 296, 149–153. https://doi.org/10.1016/s0040-6031(97)00040-3
  46. [46]     Zhang,  Y.-R.;  Wang,  X.-L.;  Zhao,  G.-M.;  Wang,  Y.-Z. Influence of Oxidized Starch on the Properties of Thermoplastic Starch. Carbohydr. Polym. 2013, 96, 358–364. https://doi.org/10.1016/j.carbpol.2013.03.093
  47. [47]     Fu, Z.; Zhang, L.; Ren, M.-H.; BeMiller, J.N. Developments in Hydroxypropylation of Starch: A Review. Starch - Stärke 2019, 71, 1800167. https://doi.org/10.1002/star.201800167
  48. [48]     Hung, P.V.; Morita, N. Physicochemical Properties of Hydroxypropylated and Cross-Linked Starches from A-Type and B-Type Wheat Starch Granules. Carbohydr. Polym. 2005, 59, 239–246. https://doi.org/10.1016/j.carbpol.2004.09.016
  49. [49]     Vorwerg, W.; Dijksterhuis, J.; Borghuis, J.; Radosta, S.; Kröger, A.  Film  Properties  of  Hydroxypropyl  Starch.  Starch  - Stärke 2004, 56, 297–306. https://doi.org/10.1002/star.200300244
  50. [50]     Wang, X.-L.; Yang, K.-K.; Wang, Y.-Z. Properties of Starch Blends with Biodegradable Polymers. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 385–409.https://doi.org/10.1081/mc-120023911
  51. [51]     Kaseem, M.; Hamad, K.; Deri, F. Thermoplastic Starch Blends: A Review of Recent Works. Polym. Sci. Ser. A 2012, 54, 165–176. https://doi.org/10.1134/s0965545x1202006x
  52. [52] Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J. Polym. Environ. 2022, 30, 75–91. https://doi.org/10.1007/s10924-021-02207-1
  53. [53]     Schwach, E.; Six, J.-L.; Avérous, L. Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization. J. Polym. Environ. 2008, 16, 286–297. https://doi.org/10.1007/s10924-008-0107-6
  54. [54]     Abdul Khalil, H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Rizal, S.; Nurul Fazita, M.R.; Mohamad Haafiz, M.K.; Nurmiati, Z.; Paridah, M.T. Enhancement of Basic Properties of Polysaccharide-Based Composites with Organic and Inorganic Fillers: A Review. J. Appl. Polym. Sci. 2019, 136, 47251. https://doi.org/10.1002/app.47251
  55. [55] Xu, H.; Cheng, H.; McClements, D.J.; Chen, L.; Long, J.; Jin, Z. Enhancing the Physicochemical Properties and Functional Performance of Starch-Based Films Using Inorganic Carbon Materials: A Review. Carbohydr. Polym. 2022, 295, 119743. https://doi.org/10.1016/j.carbpol.2022.119743
  56. [56]     Ganster, J.; Fink, H.-P. Cellulose and Cellulose Acetate. In Bio‐Based Plastics: Materials and Applications; Kabasci, S., Ed.; John Wiley & Sons, 2013; pp 35–62. https://doi.org/10.1002/9781118676646.ch3
  57. [57]     Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O., Ed.; Springer, 2015. Adv. Polym. Sci. 2015, 271, 1–52. https://doi.org/10.1007/12_2015_319
  58. [58]     Romão, S.; Bettencourt, A.; Ribeiro, I.A.C. Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers 2022, 14, 4968. https://doi.org/10.3390/polym14224968
  59. [59]     Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008, 262, 89–96. https://doi.org/10.1002/masy.200850210
  60. [60] Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. https://doi.org/10.1007/s10924-010-0258-0
  61. [61] Vatanpour, V.; Pasaoglu, M.E.; Barzegar, H.; Teber, O.O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose Acetate in Fabrication of Polymeric Membranes: A Review. Chemosphere 2022, 295, 133914.https://doi.org/10.1016/j.chemosphere.2022.133914
  62. [62]     Abdellah Ali, S.F.; William, L.A.; Fadl, E.A. Cellulose Acetate, Cellulose Acetate Propionate and Cellulose Acetate Butyrate Membranes for Water Desalination Applications. Cellulose 2020, 27, 9525–9543. https://doi.org/10.1007/s10570- 020-03434-w
  63. [63]     Sabde, A.D.; Trivedi, M.K.; Ramachandhran, V.; Hanra, M.S.; Misra, B.M. Casting and Characterization of Cellulose Acetate Butyrate Based UF Membranes. Desalination 1997, 114, 223–232. https://doi.org/10.1016/s0011-9164(98)00014-9
  64. [64]     Berthumeyrie, S.; Collin, S.; Bussiere, P.-O.; Therias, S. Photooxidation of Cellulose Nitrate: New Insights into Degradation Mechanisms. J. Hazard. Mater. 2014, 272, 137–147. https://doi.org/10.1016/j.jhazmat.2014.02.039
  65. [65]     Edge, M.; Allen, N.S.; Hayes, M.; Riley, P.N.K.; Horie, C.V.; Luc-Gardette, J. Mechanisms of Deterioration in Cellulose Nitrate Base Archival Cinematograph Film. Eur. Polym. J. 1990, 26, 623–630. https://doi.org/10.1016/0014-3057(90)90218-s
  66. [66]     Chen, G.; Zhang, B.; Zhao, J.; Chen, H. Improved Process for the Production of Cellulose Sulfate Using Sulfuric Acid/Ethanol Solution. Carbohydr. Polym. 2013, 95, 332–337. https://doi.org/10.1016/j.carbpol.2013.03.003
  67. [67]     Zhang, Q.; Lin, D.; Yao, S. Review on Biomedical and Bioengineering Applications of Cellulose Sulfate. Carbohydr. Polym. 2015, 132, 311–322.https://doi.org/10.1016/j.carbpol.2015.06.041
  68. [68]     Chen, G.; Zhang, B.; Zhao, J.; Chen, H. Development and Characterization of Food Packaging Film from Cellulose Sulfate. Food Hydrocolloids 2014, 35, 476–483. https://doi.org/10.1016/j.foodhyd.2013.07.003
  69. [69]     Nasatto, P.L.; Pignon, F.; Silveira, J.L.M.; Duarte, M.E.R.; Noseda, M.D.; Rinaudo, M. Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers 2015, 7, 777–803. https://doi.org/10.3390/polym7050777
  70. [70]     Li, L.; Thangamathesvaran, P.M.; Yue, C.Y.; Tam, K.C.; Hu, X.; Lam, Y.C. Gel Network Structure of Methylcellulose in Water. Langmuir 2001, 17, 8062–8068. https://doi.org/10.1021/la010917r
  71. [71]     Coughlin, M.L.; Liberman, L.; Ertem, S.P.; Edmund, J.; Bates, F. S.; Lodge, T.P. Methylcellulose Solutions and Gels: Fibril Formation and Gelation Properties. Prog. Polym. Sci. 2021, 112, 101324. https://doi.org/10.1016/j.progpolymsci.2020.101324
  72. [72]         Ghannam, M.T.; Esmail, M.N. Rheological Properties of Carboxymethyl Cellulose. J. Appl. Polym. Sci. 1997, 64, 289–301. https://doi.org/10.1002/(sici)1097-4628(19970411)64:2<289::aid- app9>3.0.co;2-n
  73. [73]     Benchabane, A.; Bekkour, K. Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions. Colloid Polym. Sci. 2008, 286, 1173–1180. https://doi.org/10.1007/s00396-008-1882-2
  74. [74]     Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.;Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. https://doi.org/10.3390/polym13081345
  75. [75]     Kusuma, H.S.; Yugiani, P.; Amenaghawon, A.N.; Darmokoesoemo H. Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste: A Mini Review. Chem. Chem. Technol. 2024, 18, 200–210.https://doi.org/10.23939/chcht18.02.200
  76. [76]     Sarkar, N. Thermal Gelation Properties of Methyl and Hydroxypropyl Methylcellulose. J. Appl. Polym. Sci. 1979, 24, 1073–1087. https://doi.org/10.1002/app.1979.070240420
  77. [77]     Akinosho, H.; Hawkins, S.; Wicker, L. Hydroxypropyl Methylcellulose Substituent Analysis and Rheological Properties. Carbohydr. Polym. 2013, 98, 276–281. https://doi.org/10.1016/j.carbpol.2013.05.081
  78. [78]     Burdock, G.A. Safety Assessment of Hydroxypropyl Methylcellulose as a Food Ingredient. Food Chem. Toxicol. 2007, 45, 2341–2351. https://doi.org/10.1016/j.fct.2007.07.011
  79. [79]     Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of Various Additives on the Properties of the Films and Coatings Derived from Hydroxypropyl Methylcellulose—A Review. Food Sci. Nutr. 2019, 7, 3363–3377. https://doi.org/10.1002/fsn3.1206
  80. [80]     Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
  81. [81]     Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The Gelation of Oil Using Ethyl Cellulose. Carbohydr. Polym. 2015, 117, 869–878. https://doi.org/10.1016/j.carbpol.2014.10.035
  82. [82]   Ahmadi, P.; Jahanban-Esfahlan, A.; Ahmadi, A.; Tabibiazar, M.; Mohammadifar, M. Development of Ethyl Cellulose-Based Formulations: A Perspective on the Novel Technical Methods. Food Rev. Int. 2020, 38, 685–732. https://doi.org/10.1080/87559129.2020.1741007
  83. [83]     Mahnaj, T.; Ahmed, S.U.; Plakogiannis, F.M. Characterization of Ethyl Cellulose Polymer. Pharm. Dev. Technol. 2013, 18, 982–989.https://doi.org/10.3109/10837450.2011.604781
  84. [84]     Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Zhang, X.; Liu, S.; Sun, R. “Green” Films from Renewable Resources: Properties of Epoxidized Soybean Oil Plasticized Ethyl Cellulose Films. Carbohydr. Polym. 2014, 103, 198–206. https://doi.org/10.1016/j.carbpol.2013.12.043
  85. [85]     Abdel-Halim, E.S. Chemical Modification of Cellulose Extracted from Sugarcane Bagasse: Preparation of Hydroxyethyl Cellulose. Arabian J. Chem. 2014, 7, 362–371. https://doi.org/10.1016/j.arabjc.2013.05.006
  86. [86]     El Fawal, G.F.; Abu-Serie, M.M.; Hassan, M.A.; Elnouby, M.S. Hydroxyethyl Cellulose Hydrogel for Wound Dressing: Fabrication, Characterization and In Vitro Evaluation. Int. J. Biol. Macromol. 2018, 111, 649–659. https://doi.org/10.1016/j.ijbiomac.2018.01.040
  87. [87]     Singh, N.K., Mishra, P.C., Singh, V.K.; Narang, K.K. Effects of Hydroxyethyl Cellulose and Oxalic Acid on the Properties of Cement. Cem. Concr. Res. 2003, 33, 1319–1329. https://doi.org/10.1016/s0008-8846(03)00060-7
  88. [88]     Chen, C.; Huang, Y.; Zhu, C.; Nie, Y.; Yang, J.; Sun, D. Synthesis and Characterization of Hydroxypropyl Cellulose from Bacterial Cellulose. Chin. J. Polym. Sci. 2014, 32, 439–448. https://doi.org/10.1007/s10118-014-1419-8
  89. [89]     Fortin, S.; Charlet, G. Phase Diagram of Aqueous Solutions of (Hydroxypropyl)Cellulose. Macromolecules 1989, 22, 2286–2292. https://doi.org/10.1021/ma00195a050
  90. [90]     Werbowyj, R.S.; Gray, D.G. Liquid Crystalline Structure in Aqueous Hydroxypropyl Cellulose Solutions. Mol. Cryst. Liq. Cryst. 1976, 34, 97–103. https://doi.org/10.1080/15421407608083894
  91. [91]     Guido, S. Phase Behavior of Aqueous Solutions of Hydroxypropyl Cellulose. Macromolecules 1995, 28, 4530–4539. https://doi.org/10.1021/ma00117a023
  92. [92]     Xu, Q.; Chen, C.; Rosswurm, K.; Yao, T.; Janaswamy, S. A Facile Route to Prepare Cellulose-based Films. Carbohydr. Polym. 2016, 149, 274–281. https://doi.org/10.1016/j.carbpol.2016.04.114
  93. [93]   Baghaei, B.; Skrifvars, M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. https://doi.org/10.3390/molecules25122836
  94. [94]     Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477
  95. [95] Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 837875. https://doi.org/10.1155/2011/837875
  96. [96]     Swain, S.N.; Biswal, S.M.; Nanda, P.K.; Nayak, P.L. Biodegradable Soy-Based Plastics: Opportunities and Challenges. J. Polym. Environ. 2004, 12, 35–42. https://doi.org/10.1023/B:JOOE.0000003126.14448.04
  97. [97]     Manamperi, W.A.; Espinoza-Perez, J.D.; Haagenson, D.M.; Ulven, C.A.; Wiesenborn, D.P.; Pryor, S.W. Influence of Oil Extraction Method on Properties of Canola Biodiesel, Epoxies, and Protein-Based Plastics. Ind. Crops Prod. 2015, 77, 133–138. https://doi.org/10.1016/j.indcrop.2015.08.050
  98. [98]     Campbell, K.A.; Glatz, C.E. Mechanisms of Aqueous Extraction of Soybean Oil. J. Agric. Food Chem. 2009, 57, 10904–10912. https://doi.org/10.1021/jf902298a
  99. [99]     Gaber, M.A.F.M.; Tujillo, F.J.; Mansour, M.P.; Juliano, P. Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. Food Eng. Rev. 2018, 10, 198–210. https://doi.org/10.1007/s12393-018-9182-1
  100. [100]   Anderson, T.J.; Lamsal, B.P. Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chem. 2011, 88, 159–173. https://doi.org/10.1094/CCHEM-06-10-0091
  101. [101]   Sharma, B.K.; Adhvaryu, A.; Liu, Z.; Erhan, S.Z. Chemical Modification of Vegetable Oils for Lubricant Applications. J. Am. Oil Chem. Soc. 2006, 83, 129–136. https://doi.org/10.1007/s11746-006-1185-z
  102. [102]   Kirianchuk, V.; Demchuk, Z.; Bon, I.; Nichols, J.; Pourhashem, G.; Voronov, A.; Voronov, S.; Plant Oil-Based Latex Adhesives for Packaging Applications. Food Chemistry. Modern Methods for Production of Food, Food Additives and Packaging Materials: Book of Abstracts 2020, Lviv, Ukraine; p 13.
  103. [103] Heinrich, L.A. Future Opportunities for Bio-Based Adhesives – Advantages Beyond Renewability. Green Chem. 2019, 21, 1866–1888. https://doi.org/10.1039/C8GC03746A
  104. [104] Kumar, R.; Choudhary, V.; Mishra, S.; Varma, I.K.; Mattiason, B. Adhesives and Plastics Based on Soy Protein Products. Ind. Crops Prod. 2002, 16, 155–172. https://doi.org/10.1016/S0926-6690(02)00007-9
  105. [105]   Tian, H.; Guo, G.; Fu, X.; Yao, Y.; Yuan, L.; Xiang, A. Fabrication, Properties and Applications of Soy-Protein-Based Materials: A Review. Int. J. Biol. Macromol. 2018, 120, 475–490. https://doi.org/10.1016/j.ijbiomac.2018.08.110
  106. [106]   Via, B.; Hand, W.G.; Banerjee, S. Use of Soy Flour in Resin Formulations Used to Manufacture Engineered Wood Composites. US patent 2016/0264781 A1, September 15, 2016.
  107. [107]   Riaz, M.N. Textured Soy Protein and Its Uses. Agro Food Ind. Hi Tech 2001, 12, 28–31.
  108. [108]   Shukla, P.; Bhise, S.; Thind, S.S. Role of Biodegradable Edible Films and Coatings in Food Industry. Acta Scientific Nutritional Health 2019, 3, 138–147. https://www.actascientific.com/ASNH/pdf/ASNH-03-0261.pdf
  109. [109]   Protein-Based Films and Coatings, 1st ed.; Gennadios, A., Ed.; CRC Press, 2002. https://doi.org/10.1201/9781420031980
  110. [110]   Qin, Z.; Mo, L.; Liao, M.; He, H.; Sun, J. Preparation and Characterization of Soy Protein Isolate-Based Nanocomposite Films with Cellulose Nanofibers and Nano-Silica via Silane Grafting. Polymers 2019, 11, 1835. https://doi.org/10.3390/polym11111835
  111. [111]   Xu, X.; Hu, W.; Ke, Q.; Liu, H.; Li, J.; Zhao, Y. Bio- Adhesives from Unfolded Soy Protein Reinforced by Nano- Chitosan for Sustainable Textile Industry. Text. Res. J. 2020, 90, 1094–1101. https://doi.org/10.1177/0040517519886560
  112. [112]   Liu, R.; Liu, D.; Liu, Y.; Song, Y.; Wu, T.; Zhang, M. Using Soy Protein SiOx Nanocomposite Film Coating to Extend the Shelf Life of Apple Fruit. Int. J. Food Sci. Technol. 2017, 52, 2018–2030. https://doi.org/10.1111/ijfs.13478
  113. [113]   Said, N.S.; Sarbon, N.M. Protein-Based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging; Var, I., Uzunlu, S., Eds.; IntechOpen Limited, 2019. https://doi.org/10.5772/intechopen.80774
  114. [114]   Suamir, I.N.; Rasta, I.M.; Sudirman; Tsamos, K.M. Development of Corn-Oil Ester and Water Mixture Phase Change Materials for Food Refrigeration Applications. Energy Procedia 2019, 161, 198–206. https://doi.org/10.1016/j.egypro.2019.02.082
  115. [115]   Al-Eshaikh, M.A.; Qureshi, M.I. Evaluation of Food Grade Corn Oil for Electrical Applications. Int. J. Green Energy 2012, 9, 441–455. https://doi.org/10.1080/15435075.2011.641186
  116. [116]   Lawton, J.W. Plasticizers for Zein: Their Effect on Tensile Properties and Water Absorption of Zein Films. Cereal Chem. 2004, 81, 1–5. https://doi.org/10.1094/CCHEM.2004.81.1.1
  117. [117]   Emmambux, M.N.; Stading, M. In Situ Tensile Deformation of Zein Films with Plasticizers and Filler Materials. Food Hydrocolloids 2007, 21, 1245–1255. https://doi.org/10.1016/j.foodhyd.2006.09.013
  118. [118]   Ghanbarzadeh, B.; Oromiehi, A.R. Biodegradable Biocomposite Films Based on Whey Protein and Zein: Barrier, Mechanical Properties and AFM Analysis. Int. J. Biol. Macromol. 2008, 43, 209–215. https://doi.org/10.1016/j.ijbiomac.2008.05.006
  119. [119]   Pol, H.; Dawson, P.; Acton, J.; Ogale, A. Soy Protein Isolate/Corn-Zein Laminated Films: Transport and Mechanical Properties. J. Food Sci. 2002, 67, 212–217. https://doi.org/10.1111/j.1365-2621.2002.tb11386.x
  120. [120]   Reddy, N.; Yang, Y. Thermoplastic Films from Plant Proteins. J. Appl. Polym. Sci. 2013, 130, 729–738. https://doi.org/10.1002/app.39481
  121. [121]   Evans, C.D.; Manley, R.H. Solvents for Zein. Primary Solvents. Ind. Eng. Chem. 1941, 33, 1416–1417. https://doi.org/10.1021/ie50383a019
  122. [122]   Cho, S.Y.; Lee, S.Y.; Rhee, C. Edible Oxygen Barrier Bilayer Film Pouches from Corn Zein and Soy Protein Isolate for Olive Oil Packaging. LWT Food Sci. Technol. 2010, 43, 1234– 1239. https://doi.org/10.1016/j.lwt.2010.03.014
  123. [123]   Patnode, K.; Rasulev, B.; Voronov, A. Synergistic Behavior of Plant Proteins and Biobased Latexes in Bioplastic Food Packaging Materials: Experimental and Machine Learning Study. ACS Appl. Mater. Interfaces 2022, 14, 8384–8393. https://doi.org/10.1021/acsami.1c21650.
  124. [124]   Patnode, K.; Demchuk, Z.; Johnson, S.; Voronov, A.; Rasulev, B. Computational Protein–Ligand Docking and Experimental Study of Bioplastic Films from Soybean Protein, Zein, and Natural Modifiers. ACS Sustainable Chem. Eng. 2021, 9, 10740–10748. https://doi.org/10.1021/acssuschemeng.1c01202