Рhysical-mechanical properties of polylactide composites based on polyurethane binder

2025;
: 199-204
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin

 The features of obtaining combined polylactide composites based on 3D printed matrices and  polyurethane binders modified with starch and epoxidized soybean oil have been established. The features of the physical and mechanical properties of combined composites have been studied by constructing load-strain curves. Factors influencing the physical and mechanical properties of the obtained composites depending on the composition of the composition and the plane of load application have been identified. 

1.  Belter, J. T., & Dollar, A. M. (2014, September). Strengthening of 3D printed robotic parts via fill compositing.  International Conference on Intelligent Robots and Systems (IROS), Chicago, IL. https://doi.org/ 10.1109/IROS.2014.6942959 

2.  Stratasys. (2013).  ABSplus-P430, production- grade thermoplastic for Dimension 3D printers [Technical documentation]. Retrieved from http://www.stratasys.com/~/media/Main/Secure/Material% 20Specs%20MS/Fortus-Material-Specs/Fortus-MS- ABSplus-01-13-web.ashx 

3.  NatureWorks LLC. (2011).  Ingeo resin product guide [Technical bulletin]. Retrieved from http://www.natureworksllc.com/~/media/Technical_Resour ces/one-pagers/ingeo-resin-gradesbrochure_pdf.pdf 

4.   Stratasys. (2013). FDM Nylon 12, production- grade thermoplastic for Fortus 3D production systems [Technical documentation]. Retrieved from http://www. stratasys.com/~/media/Main/Secure/Material%20Specs%20 MS/  Fortus-Material-Specs/Fortus%20Nylon12% 20Material%20SS%20EN%2012-13%20Web.pdf 

5.  Smith, W. C., & Dean, R. W. (2013). Structural characteristics of fused deposition modeling polycarbonate material.  Polymer Testing, 32(8), 1306– 1312. https://doi.org/10.1016/j.polymertesting.2013 

6.  Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D printing and cus- tomized additive manufacturing. Chemical Reviews, 117(15), 10212–10290. https://doi.org/10.1021/ acs.chemrev.7b00074 

7.  Hofmann, M. (2014). 3D printing gets a boost and opportunities with polymer materials.  ACS Macro Letters, 3(4), 382–386. https://doi.org/10.1021/mz4006556 

8.  Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., ... & DeSimone, J. M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352. https://doi.org/10.1126/science.aaa2397 

9.   Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240–3253. https://doi.org/10.1021/ac403397r 

10.  Bekas, D. G., Hou, Y., Liu, Y., & Panesar, A. (2019). 3D printing to enable multifunctionality in polymer- based composites: A review.  Composites Part B: Engineering, 179, 107540.  https://doi.org/10.1016/ j.compositesb.2019.107540 

11.  Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview.  Natural Resources, 7(3),  108–114. https://doi.org/10.4236/nr.2016.73011 

12.  Masyuk, A. S., Kechur, D. I., Kysil, D. B., Ku-liš, B. I., & Levytskyi, V. Ye. (2023). Фізико-хімічні взає- модії  в  пластифікованих  крохмальних  матеріалах.  Che- mistry, Technology and Application of Substances, 6(1), 124– 130. https://doi.org/10.23939/ctas2023.01.124 [in Ukrainian] 

13.  Levytskyi, V. Ye., Katruk, D. S., Masyuk, A. S., & Khromiak, U. V. (2022). Poly(vinyl chloride) plasticates modified by polystyrene: Features of prepa- ration, morphology and properties.  Voprosy Khimii i Khi- micheskoi Tekhnologii, (1), 68–75. https://doi.org/ 10.32434/0321-4095-2022-140-1-68-75