The current state of research on the formation of bimetallic nanostructures by galvanic replacement is presented. The effectiveness of galvanic replacement for the controlled synthesis of Au/Ag, Pd/Ag, and Pt/Ag on a silver nanotemplate in aqueous solutions is shown. The features of morphological and structural transformations of sacrificial nanosilver at various replacement stages are discussed. The dependencies of the geometry and composition of Au/Ag, Pd/Ag, and Pt/Ag nanostructures on the main parameters of galvanic replacement – such as the nature and concentration of the reducible metal ions, the ratio between the silver nanotemplate and the metal precursor, the duration of the process, and the temperature – are analysed. Accents are made on a comprehensive approach to their influence for the controlled synthesis of Au/Ag, Pd/Ag, and Pt/Ag nanostructures with predetermined characteristics.
1. Cheng, H., Wang, C., Qin, D., & Xia, Y. (2023). Galvanic replacement synthesis of metal nanostructures: bridging the gap between chemical and electrochemical approaches. Accounts of Chemical Research, 56, 900−909. https://doi.org/10.1021/acs.accounts.3c00067
2. Kuntyi, O. I., Zozulya, G. I., & Shepida, M. V. (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5−15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
3. Especel, C., Lafaye, G., & Epron, F. (2023). Bimetallic catalysts for sustainable chemistry: surface redox reactions for tuning the catalytic surface composition. ChemCatChem, 15, e202201478. https://doi.org/10.1002/cctc.202201478
4. Sun, Y., Mayers, B.T., & Xia, Y. (2002). Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow. Nano Letters, 2, 481−485. https://doi.org/10.1021/nl025531v
5. Geonmonond, R.S., Silva, A.G.M., & Camargo, P.H.C. (2018). Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. Anais da Academia Brasileira de Ciencias, 90, 719–744. https://doi.org/10.1590/0001-3765201820170561
- Li, G.G., Wang, Z., & Wang, H. (2020). Complementing nanoscale galvanic exchange with redox manipulation toward architectural control of multimetallic hollow nanostructures. ChemNanoMat, 6(7), 998–1013. https://doi.org/10.1002/cnma.202000139
7. Daniel, J.R., McCarthy, L.A., Ringe, E., & Boudreau, D. (2019). Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach. RSC Advances, 9, 389–396. https://doi.org/10.1039/C8RA09364D
8. Ansah, I.B., Lee, S.H., Mun, C.W., Yang, J.-Y., Park, J., Nam, S.-Y., Lee, S., Kim, D.-H., & Park, S.-G. (2023). Nanoscale crack generation of Au/Ag nanopillars by in situ galvanic replacement for sensitive, label-free, and rapid SERS detection of toxic substances. Sensors and Actuators B: Chemical, 379(15), 133172. https://doi.org/10.1016/j.snb.2022.133172
9. Qian, H., Anwer, S., Bharath, G., Iqbal, S., & Chen, L. (2018). Nanoporous Ag-Au bimetallic triangular nanoprisms synthesized by galvanic replacement for plasmonic applications. Journal of Nanomaterials, 2018, Article ID 1263942. https://doi.org/10.1155/2018/1263942
10. Gao, Z., Ye, H., Wang, Q., Kim, M.J., Tang, D., Xi, Z., Wei, Z., Shao, S., & Xia, X. (2020). Template regeneration in galvanic replacement: a route to highly diverse hollow nanostructures. ACS Nano, 14(1), 791−801. https://doi.org/10.1021/acsnano.9b07781
11. Kim, Y.-K., Kang, K., Kim, H., Kang, K., & Jang, H. (2019). Laser desorption/ionization mass spectrometry-based compositional analysis of Au–Ag nanoplates synthesized by galvanic replacement and their application for small molecule analysis. Journal of Industrial and Engineering Chemistry, 71, 318–326. https://doi.org/10.1016/j.jiec.2018.11.042
12. Bai, T., Tan, Y., Zou, J., Nie, M., Guo, Z., Lu, X., & Gu, N. (2015). AuBr2−‑engaged galvanic replacement for citrate-capped Au−Ag alloy nanostructures and their solution-based surface-enhanced raman scattering activity. Journal of Physical Chemistry C, 119(51), 28597–28604. DOI: 10.1021/acs.jpcc.5b10095
13. Wei, X., Fan, Q., Liu, H., Bai, Y., Zhang, L., Zheng, H., Yin, Y., & Gao, C. (2016). Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 8, 15689–15695. DOI https://doi.org/10.1039/C6NR04866H
14. Wang, W., Pang, Y., Yan, J., Wang, G., Suo, H., Zhao, C., & Xing, S. (2012). Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bulletin, 45, 91–98. DOI:10.1007/s13404-012-0052-y
15. Sung, H.K., & Kim, Y. (2015). Synthesis of Au/Ag nanoframes from Ag nanoplates by galvanic replacement reaction and its optical properties. Materials Letters, 145(15), 154–157. https://doi.org/10.1016/j.matlet.2015.01.081
16. Lee, K.-J., Lee, Y.-I., Lee, J., Myung, N.V., & Choa, Y.-H. (2012). Structural evolution of Ag-Au nanoplates by pH controlled galvanic displacement. Current Applied Physics, 12, S53–S58. https://doi.org/10.1016/j.cap.2012.02.018
17. Kim, M.H., Lee, J.-J., Im, S.H., Byun, D.-J., & Choi, K.-Y. (2013). Synthesis of hex nut shaped Au–Ag nanostructures via a galvanic replacement reaction and their optical properties. CrystEngComm, 15, 6335–6339. https://doi.org/10.1039/C3CE40652K
18. Russo, L., Merkoci, F., Patarroyo, J., Piella, J., Merkoci, A., Bastus, N.G., & Puntes, V. (2018). Time- and size-resolved plasmonic evolution with nm resolution of galvanic replacement reaction in AuAg nanoshells synthesis. Chemistry of Materials, 30, 5098−5107. https://doi.org/10.1021/acs.chemmater.8b01488
19. Petri, M.V., Ando, R.A., & Camargo, P.H.C. (2012). Tailoring the structure, composition, optical properties and catalytic activity of Ag–Au nanoparticles by the galvanic replacement reaction. Chemical Physics Letters, 531, 188–192. https://doi.org/10.1016/j.cplett.2012.02.039
20. Li, X., Qin, X., Yan, B., Huang, H., Zhang, W., & Piao, Y. (2020). Pt nanoclusters anchored on hollow Ag-Au nanostructures for electrochemical oxidation of methanol. Catalysts, 10, 1440. https://doi.org/10.3390/catal10121440
21. Park, T.-H., Lee, H., Lee, J., & Jang, D.-J. (2017). Morphology evolution of Ag/Au nanocomposites via temperature-controlled galvanic exchange to enhance catalytic activity. RSC Advances, 7, 7718–7724. https://doi.org/10.1039/C6RA26249J
22. Gilroy, K.D., Sundar, A., Farzinpour, P., Hughes, R.A., & Neretina, S. (2014). Mechanistic study of substrate-based galvanic replacement reactions. Nano Research, 7, 365–379. https://doi.org/10.1007/s12274-013-0402-y
23. Nehra, K., & Kumar, P.S. (2018). Chloride ion refined galvanic replacement: boosting monodispersity of Au-Ag hollow nanoparticles & their enhanced applications. Current Applied Physics, 18(10), 1158–1170. https://doi.org/10.1016/j.cap.2018.02.009
24. Chee, S.W., Tan, S.F., Baraissov, Z., Bosman, M., & Mirsaidov, U. (2017). Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nature Communications, 8, 1224. https://doi.org/10.1038/s41467-017-01175-2
25. Chen, A.N., McClain, S.M., House, S.D., Yang, J.C., & Skrabalak, S.E. (2019). Mechanistic study of galvanic replacement of chemically heterogeneous templates. Chemistry of Materials, 31(4), 1344–1351. https://doi.org/10.1021/acs.chemmater.8b04630
26. Tsuji, M., Kidera, T., Yajima, A., Hamasaki, M., Hattori, M., Tsuji, T., & Kawazumi, H. (2014). Synthesis of Ag–Au and Ag–Pd alloy triangular hollow nanoframes by galvanic replacement reactions without and with post-treatment using NaCl in an aqueous solution. CrystEngComm, 16, 2684–2691. https://doi.org/10.1039/C3CE42244E
27. Yang, W., Zhang, Q., Peng, C., Wu, E., Chen, S., Ma, Y., Hou, J., He, Y., Zhang, B., & Deng, L. (2019). Au@PdAg core–shell nanotubes as advanced electrocatalysts for methanol electrooxidation in alkaline media. RSC Advances, 9, 931–939. https://doi.org/10.1039/C8RA08781D
28. Chen, J., McLellan, J.M., Siekkinen, A., Xiong, Y., Li, Z.-Y., & Xia, Y. (2006). Facile synthesis of gold−silver nanocages with controllable pores on the surface. Journal of the American Chemical Society, 128, 14776–14777. https://doi.org/10.1021/ja066023g
29. Xia, X., Wang, Y., Ruditskiy, A., & Xia, Y. (2013). 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Advanced Materials, 25, 6313–6333. https://doi.org/10.1002/adma.201302820
30. Jing, H., & Wang, H. (2015). Structural evolution of Ag–Pd bimetallic nanoparticles through controlled galvanic replacement: effects of mild reducing agents. Chemistry of Materials, 27(6), 2172–2180. https://doi.org/10.1021/acs.chemmater.5b00199
31. Douk, S., Saravani, H., Farsadrooh, M., & Noroozifar, M. (2019). An environmentally friendly one-pot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. Ultrasonics Sonochemistry, 58, 104616. https://doi.org/10.1016/j.ultsonch.2019.104616
32. Tsuji, M., Hamasaki, M., Yajima, A., Hattori, M., Tsuji, T., & Kawazumi, H. (2014). Synthesis of Pt–Ag alloy triangular nanoframes by galvanic replacement reactions followed by saturated NaCl treatment in an aqueous solution. Materials Letters, 121, 113–117. https://doi.org/10.1016/j.matlet.2014.01.093
33. Bansal, V., O’Mullane, A.P., & Bhargava, S. (2009). Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H2 evolution reaction. Electrochemistry Communications, 11, 1639–1642. https://doi.org/10.1016/j.elecom.2009.06.018
34. Silva, A.G.M., Rodrigues, T.S., Haigh, S.J., & Camargo, P.H.C. (2017). Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 53, 7135−7148. https://doi.org/10.1039/C7CC02352A