DECORATION OF 3D NICKEL AND COPPER SURFACES WITH METALLIC NANOPARTICLES AND NANOSTRUCTURES BY GALVANIC REPLACEMENT. MINIREVIEW

2023;
: 29-37
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Adana Alparslan Türkeş Science and Technology University, Turkey
4
Lviv Polytechnic National University

The effectiveness of the galvanic replacement method for decorating a porous surface with metal nanoparticles and nanostructures is considered. It is shown that depending on the functional purpose, foam, porous, and dendritic metal 3D substrates are mainly used for modification by galvanic replacement. In particular, these are nickel and copper substrates on which noble metals are deposited. The peculiarities of the formation of nanosized deposits on porous copper and nickel surfaces depending on the structure of the latter and the conditions of galvanic substitution are given. The main areas of their application are specified.

1. Hassan, I.U., Salim, H., Naikoo, G.A., Awan, T., Dar, R.A., Arshad, F., Tabidi, M.A., Das, R., Ahmed, W., Asiri, A.M., Qurashi, A.H. (2021). A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 25, 101228. https://doi.org/10.1016/j.jscs.2021.101228
https://doi.org/10.1016/j.jscs.2021.101228
2. Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., Luo, L., Mao, Q., Hou, D., Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973. https://doi.org/10.1007/s10853-018-2961-5
https://doi.org/10.1007/s10853-018-2961-5
3. Nakajima, H. (2019). Fabrication, Mechanical and Physical Properties, and Its Application of Lotus-Type Porous Metals. Materials Transactions, 60, 2481-2489. https://doi.org/10.2320/matertrans.MT-M2019182
https://doi.org/10.2320/matertrans.MT-M2019182
4. Chen, J., Wang, Y., Li, S., Chen, H., Qiao, X., Zhao, J., Ma, Y., Alshareef, H.N. (2023). Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 10, 2205695. https://doi.org/10.1002/advs.202205695
https://doi.org/10.1002/advs.202205695
5. Wang, Z., Zhao, Y. (2023). Porous Nickel Electrode for Highly Sensitive Non-Enzyme Electrochemical Glucose Detection. Coatings, 13, 290. https://doi.org/10.3390/ coatings13020290
https://doi.org/10.3390/coatings13020290
6. Zhu, P., Wu, Z., Zhao, Y. (2019). Hierarchical porous Cu with high surface area and fluid permeability. Scripta Materialia, 172, 119-124. https://doi.org/10.1016/j.scriptamat.2019.07.019
https://doi.org/10.1016/j.scriptamat.2019.07.019
7. Fujita, T., Kanoko, Y., Ito, Y., Chen, L., Hirata, A., Kashani, H., Iwatsu, O., Chen, M. (2015). Nanoporous Metal Papers for Scalable Hierarchical Electrode.  Advanced Science, 2, 1500086. https://doi.org/10.1002/advs.201500086
https://doi.org/10.1002/advs.201500086
8. Hatamie, A., Rezvani, E., Rasouli, A.S., Simchi, A. (2018). Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis,  30, 1-9. https://doi.org/10.1002/elan.201800490
https://doi.org/10.1002/elan.201800490
9. Wang, Y., Niu, C., Zhu, Y. (2019). Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials,  9, 173. https://doi.org/10.3390/nano9020173
https://doi.org/10.3390/nano9020173
10. Yu, J., Shen, M., Liu, S., Li, F. Sun, D., Wang, T. (2017). A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate. Applied Surface Science, 406, 285-293. https://doi.org/10.1016/j.apsusc.2017.02.103
https://doi.org/10.1016/j.apsusc.2017.02.103
11. Tamašauskaitė-Tamašiūnaitė, L., Zabielaitė, A., Balčiūnaitė, A., Šebeka, B., Stalnionienė, I., Buzas, V., Mačiulis, L., Tumonis, L., Norkus, E. (2017). Deposition of Pt Nanoparticles on Ni Foam via Galvanic Displacement. Journal of The Electrochemical Society, 164, D53-D56. https://doi.org/10.1149/2.0601702jes
https://doi.org/10.1149/2.0601702jes
12. Rizk, M.R., Abd El-Moghny, M.G. (2020). Controlled galvanic decoration boosting catalysis: Enhanced glycerol electro-oxidation at Cu/Ni modified macroporous films. International Journal of Hydrogen Energy, 10, 645-655. https://doi.org/10.1016/j.ijhydene.2020.10.004
https://doi.org/10.1016/j.ijhydene.2020.10.004
13. Zavatski, S., Popov, A.I., Chemenev, A., Dauletbekova, A., Bandarenka, H. (2022). Wet Chemical Synthesis and Characterization of Au Coatings on Meso- and Macroporous Si for Molecular Analysis by SERS Spectroscopy. Crystals, 12, 1656. https://doi.org/10.3390/ cryst12111656
https://doi.org/10.3390/cryst12111656
14. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13. https://doi.org/10.3389/fchem.2019.00085
https://doi.org/10.3389/fchem.2019.00085
15. Zozulia, H.І., Kuntyi, O.I. (2019). Preparing of metallic electrocatalytic nanostructured surface by galvanic replacement method. Review. Chemistry, Technology and Application of Substances, 2, 25-34. https://doi.org/10.23939/ctas2019.02.025
https://doi.org/10.23939/ctas2019.02.025
16. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V.  (2020). Nanoscale galvanic replacement in non-aqueous media: a mini review. Voprosy khimii i khimicheskoi tekhnologii, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
https://doi.org/10.32434/0321-4095-2020-131-4-5-15
17. Kuntyi, O.I., Zozulya, G.I., Shepida, M.V., Nichkalo, S.I. (2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 3, 74-82. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
https://doi.org/10.32434/0321-4095-2019-124-3-74-82
18. Niu, X., Xiong, Q., Li, X., Zhang, W., He, Y., Pan, J., Qiu, F., Yan, Y. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, F651-F657. https://doi.org/10.1149/2.1551706jes
https://doi.org/10.1149/2.1551706jes
19. Verlato, E., He, W., Amrane, A., Barison, S., Floner, D., Fourcade, F., Geneste, F., Musiani, M., Seraglia, R. (2016). Preparation of Ag-modified Ni foams by galvanic displacement and their use as cathodes for the reductive dechlorination of herbicides. ChemElectroChem, 3, 2084-2092. https://doi.org/10.1002/celc.201600214
https://doi.org/10.1002/celc.201600214
20. Kamyabi, M.A., Jadali, S. (2021). A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics, 257, 123626. https://doi.org/10.1016/j.matchemphys.2020.123626
https://doi.org/10.1016/j.matchemphys.2020.123626
21. Kutyła, D., Nakajima, K., Fukumoto, M., Wojnicki, M., Kołczyk-Siedlecka, K. (2023). Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. International Journal of Molecular Sciences, 24, 3836. https://doi.org/10.3390/ijms24043836
https://doi.org/10.3390/ijms24043836
22. Schichtl, Z.G., Mehrabi, H., Coridan, R.H. (2020). Electrooxidation of Glycerol on Self-Organized, Mixed Au-Pt Interfaces Formed on Ni Substrates. Journal of The Electrochemical Society, 167, 056502. https://doi.org/10.1149/1945-7111/ab679e
https://doi.org/10.1149/1945-7111/ab679e
23. Kang, Y., Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677. https://doi.org/10.1007/s10800-013-0563-0
https://doi.org/10.1007/s10800-013-0563-0
24. Rahmatolahzadeh, R., Ebadi, M., Motevalli, K. (2017) Preparation and characterization of Cu clusters and Cu-Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science: Materials in Electronics, 28, 6056-6063. https://doi.org/10.1007/s10854-016-6281-8
https://doi.org/10.1007/s10854-016-6281-8
25. Wang, C., Wang, C., Xiong, Z., Wang, J., Zhang, W., Shi, H., Wang, D., Gu, Y., Bai, Z., Gao, Y., Yan, X. (2022) Silver modified copper foam electrodes for enhanced reduction of CO2 to C2+ products. Materials Advances, 3, 4964-4972. https://doi.org/10.1039/d2ma00188h
https://doi.org/10.1039/D2MA00188H
26. Zozulya, G.I., Kuntyi, O.I., Mertsalo, I.P., Mazur, A.S. (2021). Production of Cu/Ag porous bimetal by the galvanic replacement of dezincified brass. Materials Science, 56, 668-672. https://doi.org/10.1007/s11003-021-00480-y
https://doi.org/10.1007/s11003-021-00480-y
27. Balkis, A., Crawford, J., O'Mullane, A.P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. Nanomaterials, 8, 756. https://doi.org/10.3390/nano8100756
https://doi.org/10.3390/nano8100756
28. Anderson, S.R., O'Mullane, A.P., Gaspera, E.D., Ramanathan, Bansal, R.V. (2019). LSPR-Induced Catalytic Enhancement Using Bimetallic Copper Fabrics Prepared by Galvanic Replacement Reactions. Advanced Materials Interfaces, 1900516. https://doi.org/10.1002/admi.201900516
https://doi.org/10.1002/admi.201900516
29. Rezaei, B., Mokhtarianpour, M., Ensafi, A.A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 40, 6754-6762. http://dx.doi.org/10.1016/j.ijhydene.2015.03.122
https://doi.org/10.1016/j.ijhydene.2015.03.122
30. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engstfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., Nørskov, J.K., Jaramillo, T.F., Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119, 7610-7672. https://doi.org/10.1021/acs.chemrev.8b00705
https://doi.org/10.1021/acs.chemrev.8b00705
31. Li, C.W., Kanan, M.W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, 134, 7231−7234. https://doi.org/10.1021/ja3010978
https://doi.org/10.1021/ja3010978
32. Gnilitskyi, I., Bellucci, S., Marrani, A.G., Shepida, M., Mazur, A., Zozulya, G., Kordan, V., Babizhetskyy, V., Sahraoui, B., Kuntyi, O. (2023) Femtosecond laser‑induced nano‑ and microstructuring of Cu electrodes for CO2 electroreduction in acetonitrile medium. Scientific Reports, 13, 8837. https://doi.org/10.1038/s41598-023-35869-z
https://doi.org/10.1038/s41598-023-35869-z
33. Abbasi, N., Shahbazi, P., Kiani A. (2013) Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966-9972. https://doi.org/10.1039/c3ta10706j
https://doi.org/10.1039/c3ta10706j
34. Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., Ajayan, P.M. (2011). Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction. The Journal of Physical Chemistry C, 115, 9403-9409. https://doi.org/10.1021/jp112128g
https://doi.org/10.1021/jp112128g
35. He, X., He, R., Lan, Q., Duan, F., Xiao, J., Song, M., Zhang, M., Chen, Y., Li, Y. (2016). A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016, Article ID 2127980. http://dx.doi.org/10.1155/2016/2127980
https://doi.org/10.1155/2016/2127980