“Green” synthesis of silver nanoparticles (AgNPs) by a galvanic replacement (GR) on magnesium in solutions of sodium polyacrylate (NaPA) under ultrasound (42 kHz) is reported. The mechanism of combined action of GR and ultrasound on the formation of nanoparticles is proposed. Synthesized solutions of AgNPs are characterized by an absorption maximum at 410 nm, the value of which does not depend on the concentrations of precursors (AgNO3 and NaPA) and the duration of the process. The dimensions of nanoparticles that have a spherical shape do not exceed 30 nm. With increasing concentration of surfactant, there is a tendency to decrease in size. The rate of synthesis of AgNPs increases almost in proportion to the concentration of AgNO3 in the solution, while the effect of NaPA concentration is negligible. The synthesized nanoparticles efficiently demonstrated a bactericide effect on Escherichia coli and Staphylococcus aureus.
- Brankovic S.: Electrochem. Soc. Interface, 2018, 27, 57. https://doi.org/10.1149/2.F05182if
- PapaderakisA., MintsouliI., GeorgievaJ., SotiropouloS.: Catalysts, 2017, 7, 80.https://doi.org/10.3390/catal7030080
- Kuntyi O., Zozulya G., Shepida M.: Voprosy KhimiiiKhimicheskoi Tekhnologii, 2020, 4, 5.https://doi.org/10.32434/0321-4095-2020-131-4-5-15
- Lahiri A., Kobayashi S.: Surf. Eng., 2016, 32, 321. https://doi.org/10.1179/1743294415Y.0000000060
- Kuntyi О., ZozulyaG., ShepidaM.,NichkaloS.: Voprosy KhimiiiKhimicheskoi Tekhnologii, 2019, 3, 74. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
- Kuntyi O., Shepida M., Sus L. et al.: Chem. Chem.Technol., 2018, 12, 305. https://doi.org/10.23939/chcht12.03.305
- NiuK., KulinichS., YangJ. etal.: Chem. Eur. J., 2012, 18, 4234. https://doi.org/10.1002/chem.201102544
- Oloye O., Tang C., Du A. et al.: Nanoscale, 2019, 11, 9705.https://doi.org/10.1039/c9nr02458a
- Silva A., Rodrigues T., Haigh S., Camargo P.: Chem. Comm., 2017, 53, 7135. https://doi.org/10.1039/C7CC02352A
- Lu F., Xin H., Xia W. et al.: ACS Cent. Sci., 2018, 4, 1742. https://doi.org/10.1021/acscentsci.8b00778
- Chee S., Tan S., Baraissov Z.et al.: Nat. Commun., 2017, 53, 1224. https://doi.org/10.1038/s41467-017-01175-2
- Mancier V., Rousse C., Dille J., Fricoteaux P.: Ultrason. Sonochem., 2010, 17, 690. https://doi.org/10.1016/j.ultsonch.2009.12.009
- Liu J., Hu M., Song Y. et al.: Synth. Met., 2014, 187, 185. https://doi.org/10.1016/j.synthmet.2013.10.034
- Pienpinijtham P., Sornprasit P., Wongravee K.et al.: RSC Adv., 2015, 5, 78315.https://doi.org/10.1039/c5ra11193e
- Wu C., Mosher B., Zeng T.: Chem. Mater., 2006, 18, 2925. https://doi.org/10.1021/cm052400x
- FarsadroohM., NoroozifarM., Modarresi-AlamA., SaravaniH.: Ultrason. Sonochem., 2019, 51, 478.https://doi.org/10.1016/j.ultsonch.2018.06.011
- WuC., MosherB., ZengT.: J. Nanosci. Nanotechnol., 2008, 8, 386. https://doi.org/10.1166/jnn.2008.18144
- DoukS., SaravaniH., FarsadroohM., NoroozifarM.: Ultrason. Sonochem., 2019, 58, 104616. https://doi.org/10.1016/j.ultsonch.2019.104616
- ZhengH., MatsekeM., MunondeT.: Ultrason. Sonochem., 2019, 57, 166. https://doi.org/10.1016/j.ultsonch.2019.05.023
- RousseC., JosseJ., MancierV. etal.: RSCAdv., 2016, 6, 50933.https://doi.org/10.1039/c6ra07002g
- Sun Z., Masa J., Xia W. et al.: ACS Catal., 2012, 2, 1647.https://doi.org/10.1021/cs300187z
- Lee E., Jang J., Matin M., Kwon Y.: Ultrason. Sonochem., 2014, 21, 317. https://doi.org/10.1016/j.ultsonch.2013.05.006
- Zapata-FernándezJ., Gochi-PonceY., Salazar-GastélumM. etal.: Int. J. HydrogenEnergy, 2017, 42, 9806. https://doi.org/10.1016/j.ijhydene.2017.02.057
- Gherasim O., Puiu R., Bîrca A.etal.: Nanomaterials, 2020, 10, 2318. https://doi.org/10.3390/nano10112318
- Lee S., Jun B.: Int. J. Mol. Sci., 2019, 20, 865. https://doi.org/10.3390/ijms20040865
- JeongY., LimD., ChoiJ.: Adv. Mater. Sci. Eng., 2014, 2014, 763807.https://doi.org/10.1155/2014/763807
- Cheon J., Kim S., RheeY. etal.: Int. J. Nanomed., 2019, 14, 2773. https://doi.org/10.2147/IJN.S196472
- Haider A., Kang I.: Adv. Mater. Sci. Eng., 2015, 2015, 165257.https://doi.org/10.1155/2015/165257
- Calderón-Jiménez B., Johnson M. et al.: Front. Chem., 2017, 5, 1.https://doi.org/10.3389/fchem.2017.00006
- Liu G., Ma X., Sun X. et al.: Adv. Mater. Sci. Eng., 2018, 2018, 3758161.https://doi.org/10.1155/2018/3758161
- SrikarS., GiriD., PalD. etal.: GreenSustain. Chem., 2016, 6, 34. https://doi.org/10.4236/gsc.2016.61004
- SomeS., SenI., MandalA. etal.: Mater. Res. Express, 2018, 6, 012001. https://doi.org/10.1088/2053-1591/aae23e
- Kuntyi O., Kytsya A., MertsaloI.et al.: Colloid Polym. Sci., 2019, 297, 689.https://doi.org/10.1007/s00396-019-04488-4
- Kuntyi O., Mazur A.; KytsyaA. et al.: Micro Nano Lett., 2020, 15, 802.https://doi.org/10.1049/mnl.2020.0195
- Skіba M., Vorobyova V., Kovalenko I., Shakun A.: Chem. Chem. Technol., 2020, 14, 297. https://doi.org/10.23939/chcht14.03.297
- Pollet B.: Int. J. Hydrogen Energy, 2010, 35, 11986.https://doi.org/10.1016/j.ijhydene.2010.08.021
- He C., Liu L.; Fang Z.et al.: Ultrason. Sonochem., 2014, 21, 542. https://doi.org/10.1016/j.ultsonch.2013.09.003
- KuntyiO., ZozulyaG., KuriletsO.: Russ. J. Non-Ferr. Met., 2007, 48, 413. https://doi.org/10.3103/S1067821207060077
- KuntyiO., DobrovetskaO., KorniyS. etal.: Chem. Chem. Technol., 2014, 8, 193. https://doi.org/10.23939/chcht08.02.193
- KuntyiO., MasykO., MinakovaR.: Mater. Sci., 2004, 40, 428. https://doi.org/10.1007/s11003-005-0013-1
- YavorskiyV., SukhatskiyY., ZnakZ., MnykhR.: Chem. Chem. Technol., 2016, 10, 507.https://doi.org/10.23939/chcht10.04.507