Synthesis of Antibacterially ActiveSilver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound

2021;
: pp. 493–499
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

“Green” synthesis of silver nanoparticles (AgNPs) by a galvanic replacement (GR) on magnesium in solutions of sodium polyacrylate (NaPA) under ultrasound (42 kHz) is reported. The mechanism of combined action of GR and ultrasound on the formation of nanoparticles is proposed. Synthesized solutions of AgNPs are characterized by an absorption maximum at 410 nm, the value of which does not depend on the concentrations of precursors (AgNO3 and NaPA) and the duration of the process. The dimensions of nanoparticles that have a spherical shape do not exceed 30 nm. With increasing concentration of surfactant, there is a tendency to decrease in size. The rate of synthesis of AgNPs increases almost in proportion to the concentration of AgNO3 in the solution, while the effect of NaPA concentration is negligible. The synthesized nanoparticles efficiently demonstrated a bactericide effect on Escherichia coli and Staphylococcus aureus.

  1. Brankovic S.: Electrochem. Soc. Interface, 2018, 27, 57. https://doi.org/10.1149/2.F05182if
  2. PapaderakisA., MintsouliI., GeorgievaJ., SotiropouloS.: Catalysts, 2017, 7, 80.https://doi.org/10.3390/catal7030080
  3. Kuntyi O., Zozulya G., Shepida M.: Voprosy KhimiiiKhimicheskoi Tekhnologii, 2020, 4, 5.https://doi.org/10.32434/0321-4095-2020-131-4-5-15
  4. Lahiri A., Kobayashi S.: Surf. Eng., 2016, 32, 321. https://doi.org/10.1179/1743294415Y.0000000060
  5. Kuntyi О., ZozulyaG., ShepidaM.,NichkaloS.: Voprosy KhimiiiKhimicheskoi Tekhnologii, 2019, 3, 74. https://doi.org/10.32434/0321-4095-2019-124-3-74-82
  6. Kuntyi O., Shepida M., Sus L. et al.: Chem. Chem.Technol., 2018, 12, 305. https://doi.org/10.23939/chcht12.03.305
  7. NiuK., KulinichS., YangJ. etal.: Chem. Eur. J., 2012, 18, 4234. https://doi.org/10.1002/chem.201102544
  8. Oloye O., Tang C., Du A. et al.: Nanoscale, 2019, 11, 9705.https://doi.org/10.1039/c9nr02458a
  9. Silva A., Rodrigues T., Haigh S., Camargo P.: Chem. Comm., 2017, 53, 7135. https://doi.org/10.1039/C7CC02352A
  10. Lu F., Xin H., Xia W. et al.: ACS Cent. Sci., 2018, 4, 1742. https://doi.org/10.1021/acscentsci.8b00778
  11. Chee S., Tan S., Baraissov Z.et al.: Nat. Commun., 2017, 53, 1224. https://doi.org/10.1038/s41467-017-01175-2
  12. Mancier V., Rousse C., Dille J., Fricoteaux P.: Ultrason. Sonochem., 2010, 17, 690. https://doi.org/10.1016/j.ultsonch.2009.12.009
  13. Liu J., Hu M., Song Y. et al.: Synth. Met., 2014, 187, 185. https://doi.org/10.1016/j.synthmet.2013.10.034
  14. Pienpinijtham P., Sornprasit P., Wongravee K.et al.: RSC Adv., 2015, 5, 78315.https://doi.org/10.1039/c5ra11193e
  15. Wu C., Mosher B., Zeng T.: Chem. Mater., 2006, 18, 2925. https://doi.org/10.1021/cm052400x
  16. FarsadroohM., NoroozifarM., Modarresi-AlamA., SaravaniH.: Ultrason. Sonochem., 2019, 51, 478.https://doi.org/10.1016/j.ultsonch.2018.06.011
  17. WuC., MosherB., ZengT.: J. Nanosci. Nanotechnol., 2008, 8, 386. https://doi.org/10.1166/jnn.2008.18144
  18. DoukS., SaravaniH., FarsadroohM., NoroozifarM.: Ultrason. Sonochem., 2019, 58, 104616. https://doi.org/10.1016/j.ultsonch.2019.104616
  19. ZhengH., MatsekeM., MunondeT.: Ultrason. Sonochem., 2019, 57, 166. https://doi.org/10.1016/j.ultsonch.2019.05.023
  20. RousseC., JosseJ., MancierV. etal.: RSCAdv., 2016, 6, 50933.https://doi.org/10.1039/c6ra07002g
  21. Sun Z., Masa J., Xia W. et al.: ACS Catal., 2012, 2, 1647.https://doi.org/10.1021/cs300187z
  22. Lee E., Jang J., Matin M., Kwon Y.: Ultrason. Sonochem., 2014, 21, 317. https://doi.org/10.1016/j.ultsonch.2013.05.006
  23. Zapata-FernándezJ., Gochi-PonceY., Salazar-GastélumM. etal.: Int. J. HydrogenEnergy, 2017, 42, 9806. https://doi.org/10.1016/j.ijhydene.2017.02.057
  24. Gherasim O., Puiu R., Bîrca A.etal.: Nanomaterials, 2020, 10, 2318. https://doi.org/10.3390/nano10112318
  25. Lee S., Jun B.: Int. J. Mol. Sci., 2019, 20, 865. https://doi.org/10.3390/ijms20040865
  26. JeongY., LimD., ChoiJ.: Adv. Mater. Sci. Eng., 2014, 2014, 763807.https://doi.org/10.1155/2014/763807
  27. Cheon J., Kim S., RheeY. etal.: Int. J. Nanomed., 2019, 14, 2773. https://doi.org/10.2147/IJN.S196472
  28. Haider A., Kang I.: Adv. Mater. Sci. Eng., 2015, 2015, 165257.https://doi.org/10.1155/2015/165257
  29. Calderón-Jiménez B., Johnson M. et al.: Front. Chem., 2017, 5, 1.https://doi.org/10.3389/fchem.2017.00006
  30. Liu G., Ma X., Sun X. et al.: Adv. Mater. Sci. Eng., 2018, 2018, 3758161.https://doi.org/10.1155/2018/3758161
  31. SrikarS., GiriD., PalD. etal.: GreenSustain. Chem., 2016, 6, 34. https://doi.org/10.4236/gsc.2016.61004
  32. SomeS., SenI., MandalA. etal.: Mater. Res. Express, 2018, 6, 012001. https://doi.org/10.1088/2053-1591/aae23e
  33. Kuntyi O., Kytsya A., MertsaloI.et al.: Colloid Polym. Sci., 2019, 297, 689.https://doi.org/10.1007/s00396-019-04488-4
  34. Kuntyi O., Mazur A.; KytsyaA. et al.: Micro Nano Lett., 2020, 15, 802.https://doi.org/10.1049/mnl.2020.0195
  35. Skіba M., Vorobyova V., Kovalenko I., Shakun A.: Chem. Chem. Technol., 2020, 14, 297. https://doi.org/10.23939/chcht14.03.297
  36. Pollet B.: Int. J. Hydrogen Energy, 2010, 35, 11986.https://doi.org/10.1016/j.ijhydene.2010.08.021
  37. He C., Liu L.; Fang Z.et al.: Ultrason. Sonochem., 2014, 21, 542. https://doi.org/10.1016/j.ultsonch.2013.09.003
  38. KuntyiO., ZozulyaG., KuriletsO.: Russ. J. Non-Ferr. Met., 2007, 48, 413. https://doi.org/10.3103/S1067821207060077
  39. KuntyiO., DobrovetskaO., KorniyS. etal.: Chem. Chem. Technol., 2014, 8, 193. https://doi.org/10.23939/chcht08.02.193
  40. KuntyiO., MasykO., MinakovaR.: Mater. Sci., 2004, 40, 428. https://doi.org/10.1007/s11003-005-0013-1
  41. YavorskiyV., SukhatskiyY., ZnakZ., MnykhR.: Chem. Chem. Technol., 2016, 10, 507.https://doi.org/10.23939/chcht10.04.507