ASSESSMENT OF AIR QUALITY IN AN INDUSTRIAL FACILITY IN RUMUEME, PORT HARCOURT, NIGERIA

1
Captain Elechi Amadi Polytechnic
2
Rivers State University

Air quality in Port Harcourt, Nigeria is being assessed due to black soot, raising concerns among residents. The survey aims to assess airborne particulates in an industrial area in Rumueme, Port Harcourt, measuring pollutants with air sampling devices at different locations. GPS locates sampling spots, measurements taken at 1.6m, and noise levels measured. Particulate matter analyzed using GC-FID method. The residential area was found to Unhealthy levels of PM2.5 are present above USEPA and WHO limits, at 38.70 µgm-3. Sensitive individuals are advised to minimize outdoor activities, restrict traffic, and wear masks. Nighttime noise levels exceed the recommended limit at 50.1 dB(A) and noise mapping can identify sources. In the office area, PM2.5 levels for sensitive individuals are above the WHO limit at 28.30 µgm-3, while PM10 levels are within limits at 60.57 µgm-3. The noise level is below 90 dB(A) and harmful gases are undetectable, with trace metals meeting USEPA and OSHA limits. The helipad area has moderate PM2.5 air pollution exceeding the WHO limit at 25 µgm-3, and PM10 at 65.30 µgm-3. The average noise level is 58.87 dB(A), which is below the limit of 90 dB(A). In the jetty area, PM2.5 levels are higher than WHO guidelines at 30.50 µgm-3, while PM10 levels are at 62.87 µgm-3 causing moderate health concerns. The warehouse has high AQI for PM2.5, suggesting a need to reduce traffic. Noise level averages 66.83 dB(A), recommended.

1. Bai, L., Chen, W., He, Z., Sun, S., & Qin, J. (2020). Pollution characteristics, sources and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in an office building in northern areas, China. Sustainable Cities and Society, 53, 101891. doi: https://doi.org/10.1016/j.scs.2019.101891

2. Baxter, L.K., Burke, J., Lunden, M., Turpin, B.J., Rich, D.Q., Thevenet-Morrison, K., Hodas, N., &  Okaynak, H. (2013). Influence of human activity patterns, particle composition, and residential air exchange rates on modeled distributions of PM2.5 exposure compared with central-site monitoring data. Journal of Exposure Science & Environmental Epidemiology, 23, 241–247. doi: https://doi.org/10.1038/jes.2012.118

3. Bekö, G., Kjeldsen, B.U., Olsen, Y., Schipperijn, J., Wierzbicka, A., Karottki, D.G., Toftum, J., Loft, S., & Clausen, G. (2015). Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking. Atmospheric Environment, 110, 122–129. doi: https://doi.org/10.1016/j.atmosenv.2015.03.053

4. Brasche, S., & Bischof, W. (2005). Daily time spent indoors in German homes – Baseline data for the assessment of indoor exposure of German occupants. International Journal of Hygiene and Environmental Health, 208(4), 247–253. doi: https://doi.org/10.1016/j.ijheh.2005.03.003

5. Cakmak, S., Hebbern, C., Pinault, L., Lavigne, E., Vanos, J., Crouse, D. L., & Tjepkema, M. (2018). Associations between long-term PM2.5 and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. Environment International, 111, 200–211. doi: https://doi.org/10.1016/j.envint.2017.11.030

6. Chen, F., Lin, Z., Chen, R., Norback, D., Liu, C., Kan, H., Deng, Q., Huang, C., Hu, Y., Zou, Z., Liu, W., Wang, J., Lu, C., Qian, H., Yang, X., Zhang, X., Qu, F., Sundell, J., Zhang, Y., Li, B., Sun, Y., a&nd Zhao, Z. (2018). The effects of PM2.5 on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. Environmental Pollution, 232, 329–337. doi: https://doi.org/10.1016/j.envpol.2017.08.072

7. Chen, X. C., Jahn, H.J., Engling, G., Ward, T. J., Kraemer, A., Ho, K. F., Yim, S.H.L., & Chan, C. Y. (2017). Chemical characterization & sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China. Environmental Pollution, 231, 871–881. https://10.1016/j.envpol. 2017.08.062

8. De Kluizenaar, Y., Kuijpers, E., Eekhout, I., Voogt, M., Vermeulen, R., Hoek, G., Sterkenburg, R., Pierik, F., Duyzer, J., Meijer, E., &  Pronk, A. (2017). Personal exposure to UFP in different microenvironments and time of day. Building and Environment, 122, 237–246. doi: https://doi.org/10.1016/j.buildenv.2017.06.022

9. Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., & Wets, G. (2011). Impact of time–activity patterns on personal exposure to black carbon. Atmospheric Environment, 45(21), 3594–3602. doi: https://doi.org/10.1016/j.atmosenv.2011.03.064

10. Eludoyin, O. S, Oderinde, F. A, & Azubuike, O. J. (2016). Heavy metals concentration under rubber plantation (Hevea brasiliensis) in Hydromophic Soil of South-south. Environmental Science.

11. Junaid, M., Syed, J.H., Abbasi, N.A., Hashmi, M.Z., Malik, R.N., & Pei, D.S. (2018). Status of indoor air pollution (IAP) through particulate matter (PM) emissions and associated health concerns in South Asia. Chemosphere, 191, 651–663. doi: https://doi.org/10.1016/j.chemosphere.2017.10.097

12. Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource forassessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11, 231–252. doi: https://doi.org/10.1038/sj.jea.7500165

13. Kornartit, C., Sokhi, R., Burton, M., & Ravindra, K. (2010). Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environment International, 36(1), 36–45. doi: https://doi.org/10.1016/j.envint.2009.09.004

14. Leech, J., Nelson, W., Brunett, R., Aaron, S., & Raizenne, M. (2002). It's about time: A comparison of Canadian and American time–activity patterns. Journal of Exposure Science & Environmental Epidemiology, 12, 427–432. doi: https://doi.org/10.1038/sj.jea.7500244

15. Martuzevicius, D., Grinshpun, S.A., Lee, T., Hu, S., Biswas, P., Reponen, T., & LeMasters, G. (2008).Traffic-related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmospheric Environment, 42(27), 6575–6585. doi: https://doi.org/10.1016/j.atmosenv.2008.05.009

16. Matz, C., Stieb, D., & Brion, O. (2015). Urban-rural differences in daily time-activity patterns, occupational activity and housing characteristics. Environmental Health,  14, 88. doi: https://doi.org/10.1186/s12940-015-0075-y

17. Mmom, P. C., & Fred-Nwagwu, F. W. (2013). Analysis of Landuse and Landcover Change around the City of Port Harcourt, Nigeria. Global Advanced Research Journal of Geography and Regional Planning, 2(5), 076-86. Retrieved from https://beta.garj.org/garjgrp/pdf/2013/August/Mmom%20and%20Nwagwu.pdf

18. Morawska, L., Ayoko, G. A., Bae, G. N., Buonanno, G., Chao, C. Y.H., Clifford, S., Fu, S. C., Hanninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M. S., & Wierzbicka, A. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 108, 75–83. doi: https://doi.org/10.1016/j.envint.2017.07.025

19. Perrone, M.G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., Ballabio, D., Bolzacchini, E., & Camatini, M. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environmental Pollution, 176, 215–227. doi: https://doi.org/10.1016/j.envpol.2013.01.012

20. Schweizer, C., Edwards, R., Bayer-Oglesby, L., Gauderman, W., Ilacqua, V., Jantunen, M., Lai, H., Nieuwenhuijsen, M., & Künzli, N. (2007). Indoor time-microenvironment-activity patterns in seven regions of Europe. Journal of Exposure Science & Environmental Epidemiology, 17, 170–181. doi: https://doi.org/10.1038/sj.jes.7500490

21. Sun, Y., Hou, J., Cheng, R., Sheng, Y., Zhang, X., & Sundell, J. (2019). Indoor air quality, ventilation and their associations with sick building syndrome in Chinese homes. Energy and Buildings, 197, 112–119. doi: https://doi.org/10.1016/j.enbuild.2019.05.046

22. Van Ryswyk, K., Wheeler, A., Wallace, L., Kearney, J., You, H., Kulka, R., &  Xu, X. (2014). Impact of microenvironments and personal activities on personal PM2.5 exposures among asthmatic children. J. Journal of Exposure Science & Environmental Epidemiology, 24, 260–268. doi: https://doi.org/10.1038/jes.2013.20

23. You, S., Yao, Z., Dai, Y., & Wang, C.H. (2017). A comparison of PM exposure related to emission hotspots in a hot and humid urban environment: Concentrations, compositions, respiratory deposition, and potential health risks. Science of The Total Environment, 599–600, 464–473. doi: https://doi.org/10.1016/j.scitotenv.2017.04.217

24. Zhao, Y., Chen, C., & Zhao, B. (2019). Emission characteristics of PM2.5-bound chemicals from residential Chinese cooking. Building and Environment, 149, 623–629. doi: https://doi.org/10.1016/j.buildenv.2018.12.060

25. Zhu, Y., Huang, L., Li, J., Ying, Q., Zhang, H., Liu, X., Liao, H., Li, N., Liu, Z., Mao, Y., Fang, H., & Hu, J. (2018). Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017. Environment International, 115, 343–357. doi: https://doi.org/10.1016/j.envint.2018.03.037

26. Zwozdziak, A., Gini, M. I., Samek, L., Rogula-Kozlowska, W., Sowka, I., & Eleftheriadis, K. (2017). Implications of the aerosol size distribution modal structure of trace and major elements onhuman exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science, 103, 38–52. doi: https://doi.org/10.1016/j.jaerosci.2016.10.004