BLACK CARBON CONTENT AND DISTRIBUTION IN SURFACE SEDIMENTS FROM TEMPERATE-ZONE RESERVOIRS (POLAND)

EP.
2019;
: pp.6-13
1
Rzeszów University of Technology
2
Rzeszów University of Technology

This paper presents the results of first studies concerning the content of black carbon (BC) (which may be played a significant role in the accumulation of dangerous pollutants) in sediments of three reservoirs located in south-eastern Poland. The BC studies made use of the chemical-thermal oxidation method (CTO-375).

[1] Abe D. S., Adams D. D., Sidagis Galli C. V., Sikar E., Tundisi J. G.: Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, Concentrations and diffuse emission fluxes for carbon budget considerations, Lakes & Reservoirs: Research and Management, Brazil, São Paulo State, 2005, 10: 201-209.
https://doi.org/10.1111/j.1440-1770.2005.00277.x
[2] Ali U., Bajwa A., Chaudhry M. J. I., Mahmood A., Syed J. H., Li J., Zhang G., Jones, K. C., Malik, R. N.: Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Ecotoxicology and Environmental Safety, Pakistan, 2016, 126, 177-185. 
https://doi.org/10.1016/j.ecoenv.2015.12.024.
[3] Allen-King R., Grathwohl P., Ball W.: New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogenous carbonaceous matter in soils, sediments and rocks, Advances in Water Resources, 2002, 25, 985-1016.  
https://doi.org/10.1016/S0309-1708(02)00045-3
[4] Bednarek A., Zalewski M.: Potential effects of enhancing denitrification rates in sediments of the Sulejów Reservoir, Environment Protection Engineering, 2007, 33(2), 35-43.
[5] Bird M.I., Cali J.A.: A million-year record of fire in sub-Saharan Africa, Nature, 1998, 394, 767-769.
doi: 10.1038/29507.
https://doi.org/10.1038/29507
[6] Cornelissen G., Gustafsson O., Bucheli T., Jonker M., Koelmans A., van Noort P.: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environmental Science and Technology, 2005, 39(18), 6881-6895.
doi: 10.1021/es050191b.
https://doi.org/10.1021/es050191b
[7] Cornelissen G., Kukulska Z., Kalaitzidis S., Christanis K., Gustafsson O.: Relations between environmental black carbon sorption and geochemical sorbent characteristics, Environmental Science and Technology, 2004, 38: 3632-3640. 
doi: 10.1021/es0498742.
https://doi.org/10.1021/es0498742
[8] Cornelissen M., Elmquist M., Groth I., Gustafsson O.: Effect of sorbate planarity on environmental black carbon sorption, Environmental Science & Technology, 2004 a, 38(13), 3574-3580. 
doi: 10.1021/es049862g.
https://doi.org/10.1021/es049862g
[9] Crutzen P. J., Andreae M. O.: Biomass burning in the tropics: Impact  on atmospheric chemistry and biogeochemical cycles, Science, 1990, 250,1669-1678. 
doi: 10.1126/science.250.4988.1669.
https://doi.org/10.1126/science.250.4988.1669
[10] Goldberg E. D.: Black Carbon in the Environment. John Wiley, New York, 1985, 198 pp.
[11] González-Vila F. J, de la Rosa M., González-Pérez J. A.: Black carbon and other refractory forms in recent sediments from the Gulf of Cadiz, IOP Conference Series Earth and Environmental Science, Spain, 2009, 5(1):012009.
doi: 10.1088/1755-1307/5/1/012009.
https://doi.org/10.1088/1755-1307/5/1/012009
[12] Gruca-Rokosz R.: Dynamika węglowych gazów cieplarnianych w zbiornikach zaporowych: mechanizmy produkcji, emisja do atmosfery. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2016, 132 pp.
[13] Gustafsson Ö. R., Gschwend P. M.: The flux of black carbon to surface sediments on the New England continental shelf, Geochimica et Cosmochimica Acta, 1998, 62(3), 465-472.
doi: 10.1016/S0016-7037(97)003700.
https://doi.org/10.1016/S0016-7037(97)00370-07037(97)003700
[14] Gustafsson O.,  Bucheli T. D., Kukulska Z.,  Andersson M., Largeau C., Rouzaud J.-N., Reddy C. M., Eglington T. I.: Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 2001, 15, 881-890. 
https://doi.org/10.1029/2000GB001380
[15] Gwóźdź R., Grodecki M.: Analiza możliwości zastosowania osadów spoistych zbiornika rożnowskiego do uszczelnienia wałów powodziowych, Czasopismo Techniczne, Wydawnictwo Politechniki Krakowskiej, 2011,2-Ś/2011.
[16] Haynes R.: Labile organic matter fractions as central components of the quality of agricultural soils: an overview, Advances in Agronomy, 2005, 85, 221-268. 
https://doi.org/10.1016/S0065-2113(04)85005-3
[17] Haziak T., Czaplicka-Kotas A., Ślusarczyk Z., Szalińska E.: Przestrzenne zmiany stężeń cynku w osadach dennych Zbiornika Czorsztyńskiego, Inżynieria i Ochrona Środowiska, 2013, 16(1), 57-68.
[18] Hellings L., Dehairs F., Tackx M., Keppens E., Baeyens W.: Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. Biogeochemistry, 1999, 47, 167-186.
https://doi.org/10.1007/BF00994921.
[19] Huang L.: Distribution of black carbon in the sediments from the Changjiang River, International Conference on Materials, Environmental and Biological Engineering, 2015. 
doi: 10.2991/mebe-15.2015.96.
https://doi.org/10.2991/mebe-15.2015.96
[20] Kang Y., Wang X., Dai M., Feng H., Li A., Qian Song Q.: Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China’s marginal seas, Chinese Journal of Oceanology and Limnology, 2009, 27, 297. 
https://doi.org/10.1007/s00343-009-9151-x.
[21] Koelmans A. A., Jonker M. T. O., Cornelissen G., Bucheli T. D., Van Noort P. C. M., Gustafsson O.: Black carbon: The reverse of its dark side, Chemosphere, 2006, 63(3), 365-377. 
https://doi.org/10.1016/j.chemosphere.2005.08.034.
[22] Koszelnik P.: Źródła i dystrybucja pierwiastków biogennych na przykładzie zespołu zbiorników zaporowych Solina – Myczkowce. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2009, 147 pp.
[23] Koszelnik P., Tomaszek J., Gruca-Rokosz R.: Carbon and nitrogen and their elemental and isotopic ratios in the bottom sediment of the Solina-Myczkowce complex of reservoirs, Oceanological and Hydrobiological Studies, 2008, 37(3), 71-78.
doi: 10.2478/v10009-008-0007-z.
https://doi.org/10.2478/v10009-008-0007-z
[24] Lohmann R., Bollinger K., Cantwell M., Feichter J., Fischer-Bruns I., Zabel M.: Fluxes of soot black carbon to South Atlantic sediments, Global Biogeochemical Cycles, 2009, 23, GB1015, doi:10.1029/2008GB003253.
https://doi.org/10.1029/2008GB003253
[25] Lohmann R., MacFarlane J. K., Gschwendp P. M.: Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments Environmental Science & Technology, 2005, 39, 141-148. 
doi: 10.1021/es049424+.
https://doi.org/10.1021/es049424
[26] Lou L., Luo L., Wang W., Xu X., Hou J., Xun B., Chen Y.: Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment, Journal of Hazardous Materials, 2011, 190(1-3), 474-479. 
 https://doi.org/10.1016/j.jhazmat.2011.03.073.
[27] Martinotti W., Camusso M., Guzzi L., Patrolecco L., Pettine M.: C, N and their stable isotopes in suspended and sedimented matter from the Po estuary (Italy), Water, Air and Soil Pollution, 1997, 99, 325-332. 
https://doi.org/10.1007/978-94-011-5552-6_34
[28] Masiello C.A., Druffel E. R. M.: Black Carbon in Deep-Sea Sediments, Science, 1998, 280(5371), 1911-1913. 
doi: 10.1126/science.280.5371.1911.
https://doi.org/10.1126/science.280.5371.1911
[29] Middelburg J. J., Nieuwenhuize J., van Breugel P.: Black carbon in marine sediments, Marine Chemistry, 1999, 65, 245-252. 
https://doi.org/10.1016/S0304-4203(99)00005-5.
[30] Ostrowska A., Gawliński S., Szczubiałka Z.: Metody analizy i oceny właściwości gleb i roślin, IOŚ Warszawa, 1991.
[31] Pignatello J.: Soil organic matter as a nanoporous sorbent of organic pollutants, Advances in Colloid and Interface Science, 1998, 77-78: 445-467. 
https://doi.org/10.1016/S0001-8686(98)00055-4.
[32] Rhoades B.: The contribution of black carbon to bulk Lake Superior sediment, Duluth Journal of Undergraduate Research, 2014, 72-76.
https://doi.org/10.1055/s-0034-1370905
[33] Ribeiro L. G. L., Carreira R. S., Wagener A. L. R.: Black carbon contents and distribution in sediments from the southeastern Brazilian coast (Guanabara Bay) J. Braz. Chem. Soc., 2008, 19(7), 1277-1283.
http://dx.doi.org/10.1590/S0103-50532008000700008.
[34] Schmid M. W. I., Noack A. G.: Black carbon in soils and sediments, Analysis, distribution, implications, and current challenges, Global Biogeochemical Cycles, 2000, 14(3), 777-793. https://doi.org/10.1029/1999GB001208.
[35] Staniszewska M., Koniecko I., Falkowska L., Burska D., Kiełczewska J.: The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic), Journal of Environmental Sciences, 2016, 41, 24-32. 
https://doi.org/10.1016/j.jes.2015.04.009.
[36] Trojanowska A., Kurasiewicz M., Pleśniak Ł., Jędrysek M. O.: Emission of methane from sediments of selected Polish dam reservoir, Teka Kom. Ochr. Środ. Przyr. – OL PAN, 2009, 6, 368-373.
[37] Vreča P., Muri G.: Sediment organic matter in mountain lakes of north-western Slovenia and its stable isotopic signatures: records of natural and anthropogenic impacts, Hydrobiologia, 2010, 648, 35-49.
https://doi.org/10.1007/s10750-010-0148-4.
[38] Wójcik D.: Charakterystyka osadów dennych zbiornika zaporowego Dobczyce, Ochrona Środowiska, 1991, 1(42), 31-34.
[39] Zimmermann C. F., Keefe C. W., Bashe J.: Determination of carbon and nitrogen in sediments and particulates/coastal waters using elemental analysis. Method 440.0. NER Laboratory, USEPA, Cincinnati, Ohio, 1997. 
http://www.epa.gov/nerlcwww/m440_0.pdf.