The results of adsorption properties of complex natural sorbents in relation to the neutralization of zinc ions from wastewater are presented. The adsorption isotherm of Zn2+ ions on complex sorbents (clinoptilolite-shungite) (1:1) according to Langmuir and Freundlich models is constructed, the type of adsorption isotherms according to S. Brunauer classification is established. The value of the maximum sorption capacity of Gmax complex sorbents for Zn2+ ions is calculated. The peculiarities of the sorption process of zinc ions with the formation of a monomolecular layer based on the calculated coefficients of the Langmuir and Freundlich were found. The optimal conditions for the dependence of the degree of absorption of Zn2+ ions by complex sorbents on the duration of the sorption process are determined. The ratio "solid (complex sorbent) - liquid" was determined experimentally.
1. Bolshanina, S. B., Vorobiova, I. H., Hlovyn, N. M., & Malovanyy, M. (2013). Doslidzhennia zdatnosti hlynystykh sorbentiv do adsorbtsii ioniv tsynku. Visnyk KrNU im. M.Ostrohradskoho, 3/2013(80), 203-206.
2. Berezkin, V. I. (2013). Uglerod. Zamknutye nanochastitsy, makrostrukturi, materialy. S-Pb.: Izdatelstvo «AtrErgo».
3. Malovanyy, M. S., Vronska, N. Yu., Koval, I .Z., & Sakalova, V. (2013). Porivnialni doslidzhennia perspektyvnykh metodiv ochyshchennia pryrodnykh vod. Bulletin of the National University "Lviv Polytechnic" series: "Chemistry, technology of substances and their applications", (761), 37–44.
4. Petrushka, I. M., Malovanyy, M. S., & Petrushka, К. I. (2013). Vykorystannia helevoi modeli dlia doslidzhennia kinetyky adsorbtsii priamykh barvnykiv iz stichnykh vod pryrodnymy sorbentamy. Visnyk KrNU im. M.Ostrohradskoho, 2, 129–132.
5. Petrushka, I. M., Ruda, M. V., Hyvliud, A. M., & Koval, N. M. (2019).Vplyv polielementnoho skladu batareiok na stan dovkillia ta vyznachennia nadiinosti ekosystem. Scientific Bulletin of UNFU, 29(3), 64–79.
https://doi.org/10.15421/40290314
6. Pshinko, G. N., Puzyrnaya, L. N., & Kobets, S. A. (2015). Layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions, as a sorbent for removing cesium radionuclides from aqueous solutions. Radiochemistry, 57(3), 259–265.
https://doi.org/10.1134/S1066362215030066
7. Repo, E., Petrus, R., Sillanpaa, M., & Warchoł, J. K. (2011). Eąuilibrium studies on the adsorption of Co(II) and Ni(II) by modified silica gels: one-component and binary systems. Chem. Eng. J., 172(1), 376-385.
https://doi.org/10.1016/j.cej.2011.06.019
8. Shpylevskyi, M. Y., Shpylevskyi, Y. M., & Stelmakh, V. F. (2001). Fullerenu y fullerenopodobni stryktyru. Іnzhenerno-fyzycheskyi zhurnal, 76 (6), 25-28.
https://doi.org/10.1192/S0955603600095453
9. Sydorchuk, O.V., & Humnytskyi, Ya. M. (2013). Zovnishnodyfuziina oblast adsorbtsii vazhkykh metaliv zi stichnykh vod. Eastern-European Journal of Enterprise Technologies, 4/10 (64), 19–22.
10. Yang, K., Yan, L., & Yang, Y. (2014). Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Sep. Purif. Technol., (124), 36–42.
https://doi.org/10.1016/j.seppur.2013.12.042
11. Zhang, C., Gu, P., Zhao, J., Dhang, Z., & Deng, Y. (2009). Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate. J. Hazard. Mater., (167), 1057–1062.
https://doi.org/10.1016/j.jhazmat.2009.01.104
12. Zhang, H., Zhao X., Wei, J., & Li, F. (2014). Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials. Nucl. Eng. Des., (275), 322–328.
https://doi.org/10.1016/j.nucengdes.2014.05.006