OBTAINING AND USING SUBSTRATES WITH SEWAGE SLUDGE

EP.
2022;
: pp. 154- 162
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The article is devoted to the study of the prospects of using compost with sewage sludge in the raw material for the recultivation of disturbed lands. A special installation was used for bio-composting, which allowed controlling of the process parameters. The results of bio-indication of composts obtained under different conditions of compositions of the raw material mixture are given. Based on the analysis of the results of bio-indication, the optimal composition of the raw material mixture using "fresh" and "old" sewage sludge is established. An analysis of the parameters of the bio-indication process was carried out for this compost of optimal composition, which makes it possible to develop recommendations for the implementation of the process in industrial conditions.

 

  1. Antwi, E. K., Boakye-Danquah, J., Asabere, S. B., Takeuchi, K., & Wiegleb, G. (2014). Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. Springer Plus, 3(1), 702. doi: https://doi.org/10.1186/2193-1801-3-702
  2. Awasthi, M.K., Pandey, A,K., Khan, J., Bundela, P.S.,Wong, J.W., & Selvam, A. (2014). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol, 168, 214-221. doi: https://doi.org/10.1016/j.biortech.2014.01.048
  3. Banegas, V., Moreno, J.L., Moreno, J.I., García, C., León, G., & Hernández, T. (2007). Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manag., 27, 1317-1327. doi: https://doi.org/10.1016/j.wasman.2006.09.008
  4. Bernal, M.P., Alburquerque, J.A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol., 100(22), 5444-5453. doi: https://doi.org/10.1016/j.biortech.2008.11.027
  5. Bernal, M.P., Sommer, S.G., Chadwick, D., Qing, C., Guoxue, L., & Michel, F.C. (2017). Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron., 144, 143–233. doi: https://doi.org/10.1016/bs.agron.2017.03.002
  6. Białobrzewski, I., Mikš, M., Krajnik, Dach, J., Markowski, M., & Czekała, W. (2015). Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manag., 43, 72-83. doi: https://doi.org/10.1016/j.wasman.2015.05.036
  7. Chowdhury, A.K., Konstantinou, F., Damati, A., Akratos, C.S., Vlastos, D., Tekerlekopoulou, A.G., & Voyenas, D.V. (2015). Is physicochemical evaluation enough to characterize olive mill waste compost as soil amendment? The case of genotoxicity and cytotoxicity evaluation. J. Clean. Prod., 93, 94-102. doi: https://doi.org/10.1016/%20j.jclepro.2015.01.029
  8. DSTU 8727:2017. Osad stichnykh vod. Pidhotuvannia orhano-mineralnoi sumishi z osadu stichnykh vod. Kyiv: DP "UkrNDNTs", 2017.
  9. DSTU ISO 11269-2:2002 Yakist gruntu. Vyznachennia dii zabrudnykiv na floru gruntu. Chastyna 2: Vplyv khimichnykh rechovyn na prorostannia ta rist vyshchykh roslyn. Kyiv: Derzhstandart Ukrainy, 2004.
  10. DSTU ISO 11269-1:2004 Yakist gruntu. Vyznachennia dii zabrudnykiv na floru gruntu. Chastyna 1: Metod vyznachennia inhibitornoi dii na rist koreniv. Kyiv: Derzhstandart Ukrainy, 2005.
  11. Fijalkowski, K., Rosikon, K., Grobelak, A., Hutchison, D., J., &  Kacprzak, M. (2018). Modification of properties of energy crops under Polish condition as an effect of sewage sludge application onto degraded soil. Journal of Environmental Management, 217, 1, 509-519. doi: https://doi.org/10.1016/j.jenvman.2018.03.132
  12. Grekhova, I., &  Gilmanova, M. (2016). The usage of sludge of wastewaterin the composition of the soil for land reclamation. Procedia Engineering, 165, 794 – 799. doi: https://doi.org/10.1016/j.proeng.2016.11.777
  13. Hermann, B.G., Debeer, L., De Wilde, B., Blok, K., & Patel, M.K. (2011). To compost or not to compost: Carbon and energy footprints of biodegradable materials' waste treatment. Polym. Degrad. Stab., 96, 1159-1171.
  14. Horova, A., & Kulyna, S. (2008). Otsinka toksychnosti gruntiv chervonohradskoho hirnychopromyslovoho raionu za dopomohoiu rostovoho testu. Visnyk Lvivskoho universytetu. Seriia biolohichna, 48, 189-194.
  15. Hrechanyk, R. M., Malovanyi, M. S., Tymchuk, I. S., & Storoshchuk, U. Z. (2022). Otsiniuvannia vplyvu mineralnykh dobryv i kapsulovanykh PET na ahroekosystemy biolohichnoi rekultyvatsii porushenykh zemel. Naukovyi visnyk NLTU Ukrainy: zbirnyk naukovo-tekhnichnykh prats, 32(2), 40–44. doi: https://doi.org/10.36930/40320206
  16. Hueso, S.,  García, C., & Hernández, T. (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol. Biochem., 50, 167-173. doi: https://doi.org/10.1016/j.soilbio.2012.03.026
  17. Iqbal, M.K., Nadeem, A., Sherazi, F., &  Khan, R.A. (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. Int. J. Environ. Sci. Technol.12, 5, 1759-1768. doi: https://doi.org/ 10.1007/s13762-014-0543-x
  18. Liu, J., Xu, X.H., Li, H.T., & Xu, Y. (2011). Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Energy35, 3433-3439. doi: https://doi.org/10.1016/j.biombioe.2011.03.042
  19. Mason, I.G., & Milke, M.W. ( 2005). Physical modelling of the composting environment: a review. Part 1: reactor systems. Waste Management, 25, 481–500. doi: https://doi.org/10.1016/j.wasman.2005.01.015
  20. Maulini-Duran, C., Artola, A., Font, X., & Sánchez, A. (2013). A systematic study of the gaseous emissions from biosolids composting: Raw sludge versus anaerobically digested sludge. Bioresource Technology, 147, 43–51. doi: https://doi.org/10.1016/j.biortech.2013.07.118
  21. Mohammad, M., Alam, M., Kabbashi, N.A., & Ahsan, A. (2012). Effective composting of oil palm industrial waste by filamentous fungi, a review. Resour. Conserv. Recycl., 58, 69-78. doi: https://doi.org/10.1016/j.resconrec.2011.10.009
  22. Qian, X., Shen, G., Wang, Z., Guo, C., Liu, Y., Lei, Z., & Zhang, Z. (2014). Co-composting of livestock manure with rice straw, Characterization and establishment of maturity evaluation system. Waste Management, 34, 530-535. doi: https://doi.org/10.1016/j.wasman.2013.10.007
  23. Raut, M.P., William, S.M.P.P., Bhattacharyya, J.K., Chakrabarti, T., &  Devotta, S. (2008). Microbial dynamics and enzyme activities during rapid composting of municipal solid waste e a compost maturity analysis perspective. Bioresour. Technol., 99, 6512-6519. doi: https://doi.org/10.1016/j.biortech.2007.11.030
  24. Rynk R. (1992). On-Farm Composting Handbook. Northeast Regional Agricultural Engineering Service. Retrieved from https://campus.extension.org/pluginfile.php/48384/course/section/7167/NR...
  25. Seaker, E., & Sopper, W. (1983). Reclamation of deep mine refuse banks with municipal sewage sludge. Waste Management & Research, 1(4), 309–322.
  26. Tiquia S.M., TamaI,  N.F.Y, & Hodgkiss,.J. (1996). Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution, 93(3), 249-256. doi: https://doi.org/10.1016/s0269-7491(96)00052-8
  27. Wang, Q, Awasthi, M.K., Ren, X., Zhao, J., Wang, M., Chen, H., &  Zhang, Z. (2018). Recent advances in composting of organic and hazardous waste: a road map to safer environment, in: Biosynthetic Technology and Environmental Challenges. Springer, Singapore, 307– 329. doi: https://doi.org/10.1007/978-981-10-7434-9_17
  28. Wang, Y., Ai, P., Cao, H., &  Liu, Z. (2015). Prediction of moisture variation during composting process: a comparison of mathematical models. Bioresour. Technol., 193, 200-205. doi: https://doi.org/10.1016/j.biortech.2015.06.100
  29. Vaverková, M. D., Adamcová, D., Winkler, J., Koda, E., Petrželová, L., & Maxianová, A. (2020). Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. Science of The Total Environment, 723, 137971. doi: https://doi.org/10.1016/j.scitotenv.2020.137971
  30. Zhang, L., & Sun, X. (2014). Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol., 171, 274-284. doi: https://doi.org/10.1016/j.biortech.2014.08.079
  31. Zhou, H.X., Zhao, Y., Yang, H.Y., Zhu, L.J., Cai, B.Y., Luo, S., Cao, J.X., & Wei, Z.M. (2018). Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Bioresour. Technol., 262, 221–228. doi: https://doi.org/10.1016/j.biortech.2018.04.088
  32. Zhou, H.B., Chen, T.B., Gao, D., Zheng, G.D., Chen, J., Pan, T.H., Liu, H.T., & Gu, R.Y. (2014). Simulation of water removal process and optimization of aeration strategy in sewage sludge composting. Bioresour. Technol., 171, 452-460. doi: https://doi.org/10.1016/j.biortech.2014.07.006
  33. Zhou, C., Liu, Z., Huang, Z.L., Dong, M., Yu, X.L., & Ning, P. (2015). A new strategy for cocomposting dairy manure with rice straw: Addition of different inocula at three stages of composting. Waste Manage., 40, 38e43. doi: https://doi.org/10.1016/j.wasman.2015.03.016