GRAPHENE – GOLD GRATING-BASED STRUCTURE TO ACHIEVE ENHANCED ELECTROMAGNETIC FIELD DISTRIBUTION

2023;
: 180-186
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnik National University

In this work, the field distribution in structures such as a gold grating, a graphene layer, and a silicon substrate was studied. The conditions for maximum electromagnetic field distribution (absorption) by this structure to use in photonics and electronics devices were established. The magnitude of the electromagnetic field of a gold diffraction grating with a graphene layer increases with decreasing slit width. At the same time, an increase in the period leads to small changes in the electromagnetic field distribution. The maximum value of the distribution of the electromagnetic field is increased significantly, almost twice reducing the thickness of the graphene layer.

[1]     Strobbia, P., Languirand, E., & Cullum, B. M. (2015), “Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering”, vol. 54, no 10, pp. 100902-100902.

[2]     Roduner, E. (2006), “Size matters: why nanomaterials are different”, Chemical Society Reviews, vol. 35, no 7, pp. 583-592.

[3]     Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019), “Review on nanomaterials: Synthesis and applications”, Materials Today: Proceedings, vol.18, pp. 2182-2190.

[4]     Li, X., Zhu, J., & Wei, B. (2016), “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications”, Chemical Society Reviews, vol. 45, no 11, pp. 3145-3187.

[5]     Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010), “Plasmonics for extreme light concentration and manipulation”. Nature Materials, vol. 9, no 3, pp. 193-204.

[6]     Liang, C., Yi, Z., Chen, X., Tang, Y., Yi, Y., Zhou, Z., ... & Zhang, G. (2020), “Dual-band infrared perfect absorber based on an Ag-dielectric-Ag multilayer film with nano ring grooves arrays”, Plasmonics, vol. 15, pp. 93-100.

[7]     Karmakar, S., Kumar, D., Varshney, R. K., & Roy Chowdhury, D. (2022), “Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films”. Journal of Applied Physics, vol. 131, no 22, pp. 223102.

[8]     Kim, B. S., Sternbach, A. J., Choi, M. S., Sun, Z., Ruta, F. L., Shao, Y., ... & Basov, D. N. (2023), “Ambipolar charge-transfer graphene plasmonic cavities”. Nature Materials, pp. 1-6.

[9]     Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., ... & Novoselov, K. S. (2011), “Strong plasmonic enhancement of photovoltage in graphene”, Nature communications, vol. 2, no 1, pp. 458.

[10]  Cui, L., Wang, J., & Sun, M. (2021), “Graphene plasmon for optoelectronics”. Reviews in Physics, vol. 6, pp. 100054.

[11]  Popov, V. V., Polischuk, O. V., Davoyan, A. R., Ryzhii, V., Otsuji, T., & Shur, M. S. (2020), “Plasmonic terahertz lasing in an array of graphene nanocavities”. In Graphene-Based Terahertz Electronics and Plasmonics Jenny Stanford Publishing, pp. 587-601.

[12]  Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020), “Progress in the functional modification of graphene/graphene oxide: A review”, RSC Advances, vol. 10, no 26, pp. 15328-15345.

[13]  Wang, S., Zhang, D. W., & Zhou, P. (2019), “Two-dimensional materials for synaptic electronics and neuromorphic systems”, Science Bulletin, vol. 64, no 15, pp. 1056-1066.

[14]  Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., ... & Liu, Z. (2019), “Graphene photonic crystal fibre with strong and tunable light–matter interaction”, Nature Photonics, vol. 13, no 11, pp. 754-759.

[15]  Fitio, V., Yaremchuk, I., Vernyhor, O., & Bobitski, Y. (2018), “Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate”. Applied Nanoscience, vol. 8, pp. 1015-1024.

[16]  Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., ... & MacDonald, D. (2015) ”Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon”, AIP Advances, vol. 5, no 6, pp 067168

[17] Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., & Liu, S. (2018). Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Applied Surface Science, 439, 1079-1087.