The article shows that depending on the features of applied application, different requirements are put forward for information and technical features and performance characteristics of information and network systems. This motivates the creation of new and improvement of existing video encoding technologies. However, with the development of information technologies, new opportunities are created for their applied application. The requirements for: completeness of video data are growing; analysis of complex video scenes, frames; providing information advantage in the context of cyber confrontation. Accordingly, there is an urgent need for further improvement of compression technologies in the direction of increasing their efficiency in the system of indicators "compression level – distortion level". The article substantiates the fact that improvement should first of all be carried out in the direction of processing flexibility, taking into account the types and significance of video scene objects. Hence the need to create a technology for classifying video scenes and in an additional search for new dependencies. It is shown that one of such approaches is a method based on the construction of spectral-parametric description for segments and clustering of their sequences (datasets) according to certain meta-characteristics. At the same time, the reverse process for recovering video data from data sets with their preliminary decoding does not have a defined and reasonably systematized technological solution. Hence, the purpose of the research of the article concerns the development of a method for recovering video data based on the process of decoding data sets in spectral-parametric description. A technology for restoring the sequence of transformants has been developed based on taking into account: the cluster distribution of transformants, which is presented in the spectral-parametric description according to their structural features; decoding of binary block codes with the appropriate length set by marker references; simultaneous restrictions on the intervals of the definition area in the direction of SPS slices and components of SPPT clusters; determination of the weight of the components of the components of the SPPT according to positional rules depending on their characteristics: the number of local spectral sub-bands; current capacity of the components of the SPPT; determination of the length of marker codes depending on the structural feature of the cluster by the length of the components of the SPPT.
[1]. Бараннік , Д. В., Гуржій , П. М., Бараннік , В. В., Сідченко , С. О., Чорномаз , І. К., and Григор’ян , М. Б. (2023) “Saving Elements Methods for Service Components of Images Cryptocompression Codograms”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (92), pp. 28-40. doi: 10.20535/RADAP.2023.92.28-40.
[2]. Barannik V. et al. Model for Representing Significant Segments of a Video Image Based on Locally Positional Coding on a Structural Basis. Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IEEE IDAACS-SWS 2020): proceedings of IEEE 5nd International Symposium, 2020. P. 1–5. DOI: 10.1109/IDAACS-SWS50031.2020.9297068.
[3]. Barannik V. et al. Indirect Steganographic Embedding Method Based On Modifications of The Basis of the Polyadic System. Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET’2020): proceedings of 15 th IEEE International Conference, 2020. P. 699–702. DOI: 10.1109/TCSET49122.2020.235522.
[4]. Ibrahim D. R., The J S., Abdullah R. (2021). An overview of visual cryptography techniques. Multimed Tools Appl 80, 31927–31952. doi: https://doi.org/10.1007/s11042-021-11229-9
[5]. Barannik, V. et al. (2023). A Method of Scrambling for the System of Cryptocompression of Codograms Service Components. In: Klymash, M., Luntovskyy, A., Beshley, M., Melnyk, I., Schill, A. (eds) Emerging Networking in the Digital Transformation Age. TCSET 2022. Lecture Notes in Electrical Engineering, vol 965. Springer, Switzerland, Cham. https://doi.org/10.1007/978-3-031-24963-1_26.
[6]. Bhat, R., & Nanjundegowda, R. (2024). CryptoGAN: a new frontier in generative adversarial network-driven image encryption. IAES International Journal of Artificial Intelligence (IJ-AI), 13(4), 4813-4821. doi:http://doi.org/10.11591/ijai.v13.i4.pp4813-4821
[7]. Yuan Liu, Songyang Zhang, Jiacheng Chen, Zhaohui Yu, Kai Chen, Dahua Lin. Improving Pixel-based MIM by Reducing Wasted Modeling Capability. 2023 IEEE/CVF International Conference on Computer Vision (ICCV). – 2023. – pp. 5338-5349. DOI Bookmark: 10.1109/ICCV51070.2023.00494.
[8]. Chen, C.-C., Lin, C.-S., Chen, J.-Z. (2022). Boolean-Based (k, n, m) Multi-Secret Image Sharing. Axioms, 11, 197. doi: https://doi.org/10.3390/axioms11050197
[9]. Сидченко С.А. Обоснование значимых угроз безопасности видеоинформационного ресурса систем видеоконференцсвязи профильных систем управления / В.В. Баранник, А.В. Власов, С.А. Сидченко // Информационно-управляющие системы на ЖД транспорте. – 2014. ‑ №3. ‑ С. 24 – 31.
[10]. Alsafyani M, Alhomayani F, Alsuwat H, Alsuwat E. Face Image Encryption Based on Feature with Optimization Using Secure Crypto General Adversarial Neural Network and Optical Chaotic Map. Sensors. 2023; 23(3):1415. https://doi.org/10.3390/s23031415
[11]. Tarasenko, D., Kulitsa, O., Barannik, D., Barannik, V.V., Podlesny, S., The video stream encoding method in infocommunication systems. IEEE 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (IEEE TCSET 2018), 2018, pp. 538-541. DOI: 10.1109/TCSET.2018.8336259.
[12]. Xu, Daihan et al. “Design of artificial intelligence image encryption algorithm based on hyperchaos.” Ain Shams Engineering Journal (2022): n. pag.
[13]. Gadhiya N., Tailor S., Degadwala S. (2024). A Review on Different Level Data Encryption through a Compression Techniques. 2024 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, p. 1378-1381. doi: 10.1109/ICICT60155.2024.10544803.
[14]. Yuanlin C., Tianxiu L., Caiwen C., Yi X. A novel image encryption method based on improved two-dimensional logistic mapping and DNA computing. Advances in Nonlinear Systems and Networks, 2024, Volume III, DOI: 10.3389/fphy.2024.1469418.
[15]. Matel I.-E. (2024) Novel Lossless Crypto-Compression Scheme for Medical Images. 2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, p. 378-385. doi: 10.1109/SYNASC65383.2024.00069.
[16]. V. Barannik and A. Shiryaev, "Quadrature compression of images in polyadic space," Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 2012, pp. 422-422. INSPEC Accession Number: 12713484.
[17]. Hamano G., Imaizumi S., Kiya H. (2023). Effects of JPEG Compression on Vision Transformer Image Classification for Encryption-then-Compression Images. Sensors, 23, 3400. doi: https://doi.org/10.3390/s23073400
[18]. Alqahtani, F. (2024). Ai-powered image security: utilizing autoencoders for advanced medical image encryption. Computer Modeling in Engineering & Sciences, 141(2), 1709–1724. https://doi.org/10.32604/cmes.2024.054976
[19]. Shoko Imaizumi, Genki Hamano, Hitoshi Kiya. Effects of JPEG Compression on Vision Transformer Image Classification for Encryption-then-Compression Images. - Sensors vol.23. – pp.1-19. – 2023. https://doi.org/10.3390/s23073400.
[20]. Barannik V. et al. "Method of coding dynamic sequence of frame-spline structures of provided frames in info-communications," 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT), Lviv, Ukraine, 2021, pp. 36-40, doi: 10.1109/AICT52120.2021.9628928.
[21]. Fatima R., Baheeja K, May A. Survey Study Image Cryptography System. BIO Web Conf, Volume 97, 2024, DOI: 10.1051/bioconf/20249700044.
[22]. Barannik V. et al. Method of indirect information hiding in the process of video compression. Radioelectronic and Computer Systems. 2021. №. 4. PP. 119–131. https://doi.org/10.32620/reks.2021.4.
[23]. V. Barannik, O. Slobodyanyuk, A. Krasnorutsky, A.Korchenko, S.Pchelnikov “Aerial Photographs for Ensuring Cyber Security of Critical Infrastructure Objects” 2021 Proceedings of Selected Papers of the Workshop on Cybersecurity Providing in Information and Telecommunication Systems (CPITS 2021), Kyiv, Ukraine, pp. 182–191.
[24]. Xiaowu L., Huiling P. Chaotic medical image encryption method using attention mechanism fusion ResNet model. Front Neurosci. 2023, DOI: 10.3389/fnins.2023.1226154.
[25]. Цімура Ю., Єлісєєв Є.С., Бараннік В.В., Бабенко М.В., Ушань В. Метод стиснення кластеризованих трансформант на основі блочного кодування з локально-монотонним визначенням довжини // Наукоємні технології. 2024. №3(63). С. 274-281. DOI: https://doi.org/10.18372/2310-5461.63.18971.
[26]. Aprilpyone, M.; Kiya, H. Privacy-Preserving Image Classification Using an Isotropic Network. IEEE Multimed. - 2022. - 29. – pp. 23–33. doi: 10.1109/MMUL.2022.3168441.
[27]. Barannik V. et al. "Significant Microsegment Transformants Encoding Method to Increase the Availability of Video Information Resource," 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 2020, pp. 52-56, doi: 10.1109/ATIT50783.2020.9349256.
[28]. Alimpiev, A. N., Barannik, V. V., Sidchenko, S. A. (2017). The method of cryptocompression presentation of videoinformation resources in a generalized structurally positioned space, Telecommunications and Radio Engineering, 76 (6), 521–534. doi: https://doi.org/10.1615/TelecomRadEng.v76.i6.60
[29]. Єлісєєв Є.С., Цімура Ю., Бараннік В.В., Бабенко М.В., Тарасенко Д. Метод кластеризації послідовності трансформант за структурними ознаками їх спектрально-параметричного опису // Наукоємні технології. 2024. №2(62). С. 185-192. DOI: https://doi.org/10.18372/2310-5461.62.18712
[30]. V. Barannik, A. Krasnorutsky, Y. Ryabukha, R. Onyshchenko, S. Shulgin and O. Slobodyanyuk, "Marker Information Coding for Structural Clustering of Spectral Space," 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine, 2021, pp. 46-51, doi: 10.1109/ATIT54053.2021.9678538.
[31]. Yuhang R. A novel image encryption system based on chaotic system and index mapping. ICIPAl 2024. DOI: 10.1117/12.3035300