HYBRID ACTIVE LAYERS FOR ORGANIC SOLAR CELLS BASED ON BODIPY DERIVATIVES AND NICKEL PHTHALOCYANINE

2025;
: 195-201
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnik National University

In response to the current challenges of organic photonics and the demand for organic photodetectors (OPDs) with a broadened spectral range and enhanced sensitivity, this work proposes hybrid non-fullerene systems that combine nickel(II) phthalocyanine (NiPc) metal complexes with boron–dipyrromethene (BODIPY)-based dyes. In this study, a heterostructure based on NiPc and a newly synthesised BODIPY derivative sensitiser (bThBODIPY) was developed and comprehensively evaluated. The bThBODIPY dye, belonging to the BODIPY family, exhibits an absorption maximum around 510 nm, whereas the newly synthesised BODIPY sensitiser demonstrates an absorption maximum near 600 nm. Both dyes form stable dark-red solid compounds that are readily soluble in common organic solvents (toluene, chlorobenzene, dichloromethane, chloroform, ethyl acetate), enabling the fabrication of homogeneous thin films resistant to subsequent thermal treatment. The photosensitivity of the fabricated devices was assessed on thin-film OPDs with the architecture ITO/PEDOT:PSS/NiPc: sensitiser:bThBODIPY/BCP/Al. The active layer was deposited by spin-coating, employing a pre-optimised NiPc-to-sensitiser ratio followed by post-deposition thermal annealing. Under illumination with the standard solar spectrum AM 1.5G (100 mW cm⁻²), the fabricated device demonstrated stable photoelectrical parameters. Specifically, the fill factor (FF) reached 16.4%, while the power conversion efficiency (PCE) was 0.32%. The obtained results confirm the high potential of non-fullerene NiPc–BODIPY hybrid systems for extending the spectral sensitivity and improving the performance of organic photodetectors. Promising directions for further research include interface modification with selective buffer layers, the design of multi-sensitiser systems employing complementary dyes, and the development of architectures capable of harvesting the entire visible and near-infrared spectral regions. Promising directions for further research include interface modification with selective buffer layers, the design of multi-sensitiser systems employing complementary dyes, and the development of architectures capable of harvesting the entire visible and near-infrared spectral regions.

  1. Keremane K. S., Abdellah I. M., Eletmany M. R., Naik P., Anees P., Adhikari A. V. Push–pull carbazole twin dyads as efficient sensitizers/co-sensitizers for DSSC application: effect of various anchoring groups on photovoltaic performance. J. Mater. Chem. C. 2025;13(18):9258–9275. DOI: 10.1039/D4TC04612A.
  2. Bogomolec M., Glavaš M., Škorić I. BODIPY Compounds Substituted on Boron. Molecules. 2024;29(21):5157. DOI: 10.3390/molecules29215157.
  3.  Akyol, B., Cokluk, E. M., Ayhan, M. M., Tuncel Kostakoğlu, S., & Gürek, A. G. (2024). Tuning the Photophysical Properties of BODIPY Dyes and Studying Their Self-Assembly via Hydrogen Bonding. ACS omega, 10(1), 1716-1726.
  4. Chapran M., Angioni E., Findlay N. J., Breig B., Cherpak V., Stakhira P., Tuttle T., Volyniuk D., Grazulevicius J. V., Nastishin Y. A., Lavrentovich O. D., Skabara P. J. An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices. ACS Appl. Mater. Interfaces. 2017;9(5):4750–4757. DOI: 10.1021/acsami.6b13689.
  5. Kim Y. R., Lee S., Kim J., Oh J., Kim J.-H., Ki T., Oh C.-M., Hwang I.-W., Suh H., Lee K., Kim H. Photostable organic solar cells based on non-fullerene acceptors with an aminated bathocuproine electron transport layer. J. Mater. Chem. A. 2023;11(9):4220–4230. DOI: 10.1039/D2TA09327H.
  6. Luo Y., Fang S., Zheng N., et al. High-performance organic photovoltaic materials based on phthalocyanine derivatives. ACS Appl. Energy Mater. 2020;3(2):1694–1701.
  7. Chen X., Yu B., Wang J., et al. Recent advances in organometallic photodetectors. J. Mater. Chem. C. 2023;11(6):1850–1858.
  8. Li X., Peng X.H., Zheng B.D., Tang J., Zhao Y., Zheng B.Y., Ke M.R., Huang J.D. Chem. Sci. 2018;9(9):2098–2104. DOI: 10.1039/C7SC05115H.
  9. Haider M., Zhen C., Wu T., Liu G., Cheng H.M. J. Mater. Sci. Technol. 2018;34(9):1474–1480. DOI: 10.1016/j.jmst.2018.03.005.
  10. Bertrand B., Passador K., Goze C., Denat F., Bodio E., Salmain M. Coord. Chem. Rev. 2018;358:108–124. DOI: 10.1016/j.ccr.2017.12.007.
  11. Zhou W., Guo H., Lin J., Yang F. J. Iran Chem. Soc. 2018;15:2559–2566. DOI: 10.1007/s13738-018-1444-6.
  12. Kim N.H., Kim D. IntechOpen. 2018. DOI: 10.5772/intechopen.80349.
  13. Harrath K., Talib S.H., Boughdiri S. J. Mol. Model. 2018;24:279. DOI: 10.1007/s00894-018-3821-6.
  14. Ruan Z., Zhao Y., Yuan P., Liu L., Wang Y., Yan L. J. Mater. Chem. B. 2018;6(5):778–786. DOI: 10.1039/C7TB02924A.
  15. Niu G., Wang S., Li J., Li W., Wang L. J. Mater. Chem. A. 2018;6(11):4823–4830. DOI: 10.1039/C8TA00161H.
  16. Antina E., Bumagina N., Marfin Y., Guseva G., Nikitina L., Sbytov D., Telegin F. Molecules. 2022;27(4):1396. DOI: 10.3390/molecules27041396.
  17. Spector D., Abramchuk D.S., Bykusov V.V., et al. Russ. Chem. Rev. 2024;93(10):RCR5136. DOI: 10.59761/RCR5136.
  18. Liu Y., Li Y., Yang Y. Adv. Mater. 2018;30(19):1800466. DOI: 10.1002/adma.201800466.
  19. Claessens C.G., González-Rodríguez D., Rodríguez-Morgade M.S., Medina A., Torres T. Chem. Rev. 2018;118(6):2632–2708. DOI: 10.1021/acs.chemrev.7b00420.
  20. Wang X., Zhan X. Chem. Soc. Rev. 2018;47(10):2939–2960. DOI: 10.1039/C7CS00858A.
  21. Li J., Zhao Y., Tan H., Hu Y., Yang Y. J. Mater. Chem. A. 2018;6(5):2345–2361. DOI: 10.1039/C7TA11376A.
  22. Yum J.H., Jang S.R., Humphry-Baker R., Grätzel M., Nazeeruddin M.K. Energy Environ. Sci. 2018;11(1):84–93. DOI: 10.1039/C7EE00239A.
  23. Zhang Q., Cao G. Nano Energy. 2018;13:509–522. DOI: 10.1016/j.nanoen.2015.02.028.
  24. Bizet C., Rio J., van Lier J.E. J. Porphyr Phthalocyanines. 2019;23(01n03):1–15. DOI: 10.1142/S108842461930001X.
  25. Yanık H., Koca A., Gül A. Dyes Pigments. 2020;174:108048. DOI: 10.1016/j.dyepig.2019.108048.
  26. Chen Y., Liu Y., Wang Y., Zhang J., Liu J. ACS Appl. Mater. Interfaces. 2021;13(5):6789–6798. DOI: 10.1021/acsami.0c20456.
  27. Rio J., Bizet C., van Lier J.E. New J. Chem. 2018;42(3):2145–2153. DOI: 10.1039/C7NJ04238A.
  28. Guseva G., Antina E., Marfin Y., Bumagina N. J. Photochem. Photobiol. A Chem. 2022;429:113964. DOI: 10.1016/j.jphotochem.2022.113964.
  29. Djurišić A. B., Kwong C. Y., Lau T. W., Liu Z. T., Kwok H. S., Lam L. S. M., Chan W. K. Spectroscopic ellipsometry of metal phthalocyanine thin films. Appl. Opt. 2003;42(31):6382–6387. DOI: 10.1364/AO.42.006382.
  30. Telegin F., Sbytov D., Nikitina L., Antina E. Electrochim. Acta. 2023;446:141922. DOI: 10.1016/j.electacta.2023.141922.
  31. Liu Y., Zhang H., Wang J., Zhao Y. Thin Solid Films. 2024;794:140312. DOI: 10.1016/j.tsf.2024.140312