About the accuracy of calculation the main characteristics Earth's gravity field

2014;
: pp. 30-38
https://doi.org/10.23939/jgd2014.02.030
Received: March 05, 2014
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

Objective. The main purpose is to research the requirements for calculation accuracy characteristics of the Earth's gravitational field (quasigeoid heights and plumb line deflection components) based on an analysis of existing methods and requirements to determine these characteristics. Methodology. Gravimetric method is the primary method for determining the height quasigeoid and plumb line deflection components for land and shelf areas. Initial data in this case are results of the gravimetric survey. The main methods of determining the characteristics of Earth's gravitational field is integral transform methods, parametric approximation methods, statistical collocation methods and combined methods. These methods calculate heights of quasigeoid and plumb line deflection components produce with different results on the accuracy of calculations. Methods of integral transforms based on formulas Stokes and Vening-Meynes amended by Molodensky. When using analytic continuation precision calculation of plumb line deflection components this method reaches 0.5-1" for all regions. Parametric approximation methods make it possible to calculate the characteristics of Earth's gravitational field in the central and close areas(V.I. Aronov method) or incorporation of global and regional characteristics (spherical harmonics method). Statistical collocation method uses statistical relationships between the calculated characteristics of the gravitational field and the initial gravity anomalies, but its accuracy is limited due to the replacement of the true values of kovariations on the model values. In the combined method take into account the impact close areas by gravimetric data using the generalized Stokes integral, the impact of distant zones - using geopotential harmonic coefficients. Results. For practical implementation heights quasigeoid and plumb line deflection components definition geosphere surface is divided into a central area (radius 100 km), close (to 1000 km) and long (the rest of the geosphere) zone. It is necessary to have the presence of input information in the form of gravimetric mesurements scale of 1:50 000 for the central zone and the scales of 1:100 000-1:200 000 for close zones. The input information for long areas are modern digital models of the gravity field of the Earth in the form of harmonic geopotential coefficients.  Practical significance. Сalculation of plumb line deflection components should be considered the predominant influence of the central and close areas, quasigeoid heights definition requires a careful consideration of the impact of long areas. For successful application of computation methods of gravity field characteristics must use appropriate gravimetric and topographic information. Originality. Under current requirements, calculations of quasigeoid heights should be accurate to 0.1 m, and the plumb line deflection components - 0.05-0.1". The most efficient and accurate calculating method of these characteristics is combined method.

  1. Aronov V. I. Obrabotka na ЕVM znachenij anomalij sily tjazhesti pri proizvol'nom rel'efe poverhnosti nabljudenij [Computer processing values of gravity anomalies for arbitrary surface topography observations]. Moscow: Nedra, 1976, pp. 108-124.
  2. Brovar B. V., Dem'janov G. V. i dr Gravimetrija i geodezija [Gravimetry and geodesy]. Moscow: Nauchnyj mir, 2010, 561 p.
  3. Brovar V. V., Brovar B. V. Formuly dlja vychislenija osnovnyh harakteristik gravitacionnogo polja s pogreshnost'ju porjadka kvadrata szhatija Zemli dlja testovyh modelej [Formulas for calculating the basic characteristics of the gravity field with the error of the order of a square compression of the Earth for test models]. Fizicheskaja geodezija, Kniga 2 [Physical geodesy, book 2], Moscow: CNIIGAIK 1996, pp. 191.
  4. Dvulit P. D., Gholubinka Ju. I. Pro vyznachennja ghravimetrychnykh skladovykh vidkhylenj prjamovysnykh linij [About determination gravimetric components of the plumb line deviation] // Visnyk gheodeziji ta kartoghrafiji [Journal of Geodesy and Cartography]. 2008, no. 2, pp.7-9.
  5. Dvulit P. D., Gholubinka Ju. I. Porivnjaljna kharakterystyka vyznachennja vysot kvazigheojida terytoriji Ukrajiny z vykorystannjam modelej gheojida/kvazigheojida ta ghravitacijnogho polja Zemli [Comparative characteristic of determination heights of quasigeoid in Ukraine using geoid/quasigeoid models and Earth's gravity field]. Gheodezija, kartoghrafija i aerofotoznimannja [Geodesy, Cartography and Aerial Survey], no. 72, 2009, pp. 27-34.
  6. Dvulit P. D., Bojko I. V. Pro tochnistj obchyslennja skladovykh vidkhylenj prjamovysnykh linij u rajoni Zakhidnykh Aljp [About the accuracy of plumb lines deflections computations in Western Alps area]. Gheodynamika [Geodynamics], no. 1(12)/2012, pp. 58-62.
  7. Dvulit P. D., Dzhuman B. B, Smelyanets O. V. Modelj ghravimetrychnykh skladovykh vidkhylenj prjamovysnykh linij terytoriji Ukrajiny za danymy EGM2008 [The gravimetric plumb lines deflection model on the Ukraine area computed by EGM2008]. Gheodynamika [Geodynamics], no. 1(12)/2012, pp. 30-35.
  8. Marych M. I. Issledovanie metodov opredelenija vozmushhajushhego potenciala i uklonenij otvesa na fizicheskoj poverhnosti Zemli [Investigation of methods for determining the perturbing potential and plumb lines deflections on the physical surface of the Earth]. Avtoreferat na soisk. uchenoj stepeni doktora tehnicheskih nauk [Abstract for the degree of Doctor of Technical Sciences], 1971.
  9. Molodenskij M. S., Eremeev V. F., Jurkina M. I. Metody izuchenija vneshnego gravitacionnogo polja i figury Zemli [Methods of research the external gravitational field and figure of the Earth]. Trudy CNIIGAIK, no.131, 1960, 252 p.
  10. Pellinen L. P. Ispol'zovanija formuly M. S. Molodenskogo dlja vychislenija anomalij sily tjazhesti po vysotam kvazigeoida [Using the formula of M. S. Molodensky to compute gravity anomalies by heights of quasigeoid]. Geodezija i kartografija [Geodesy and Cartography], no.3, 1984
  11. Pellinen L. P. Opredelenie parametrov figury i gravitacionnogo polja Zemli v CNIIGAIK [Defining the parameters of the figure and the gravity field of the Earth in CNIIGAiK]. Geodezija i kartografija [Geodesy and Cartography], no.4, 1992, pp. 29-35
  12. Godah W., Szelachowska M., Krynski J. Accuracy assesment of GOCE-based geopotencial models and their use for modelling the gravinetric quasigeoid – A case study for Poland. Geodesy and Cartography, Vol. 63, No 1, 2014, pp.3-24 https://doi.org/10.2478/geocart-2014-0001
  13. ICGEM (International Centre for Global Earth Models): Available at: http://icgem.gfz-potsdam.de/ICGEM/
  14. Heiskanen W.A., Moritz H. Physical geodesy. Institute of Physical Geodesy, Graz, 1981.
  15. Hofmann-Wellenhof  B., Moritz H. Physical geodesy. Springer Science & Business Media, 2006, 420 p.
  16. Krynski J., Olszak T., Barlik M., Dykowski P. New gravity control in Poland – needs, the concept and the design. Geodesy and cartography. 2013, Vol. 62, no. 1, pp. 3-21. https://doi.org/10.2478/geocart-2013-0001
  17. Torge W. Gravimetry. Walter de Gruyter, Berlin – New-York, 1989, 465 p.