On the extremal properties of the spherical functions, described the external gravitational potential of the Earth

1
Lviv Politecnic National University
2
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University

The problem of studying the extremum of a n-th-order spherical function of general form is discussed. A method is given for finding extremum points of spherical functions.The spherical functions of lower orders (up to the second inclusive), which describe the first terms of the expansion of the Earth's external gravitational potential in a series of spherical functions, are specifically investigated for an extremum.

1. Akivis M. A., Gol'dberg V. V. Tenzornoe ischislenie. M., «Nauka», 1969, 351 s. 
2. Brovar V. V., Magnickij V. A., Shimbe- rea B. P. Teorija figury Zemli. M., Izd-po geodezicheskoj literatury, 1961, 256 s. 
3. Gobson E. V. Teorija sfericheskih i jellipsoidal'nyh funkcij. L., «Inostrannaja literatura», 1952, 476 s. 
4. Duboshin G. //. Nebesnaja mehanika. Osnovnye zadachi i metody. M., «Nauka», 1975, 799 s. 
5. Kotljakov N. S.. Gliner Je. B., Smirnov M. M. Uravnenija v chastnyh proizvodnyh matematicheskoj fiziki. M., «Vysshaja shkola», 1970, 710 s. 
6. Meshherjakov I. A. O mul'tipol'nom predstavlenii gravitacionnogo potenciala. — «Geodezija, kartografija i ajerofotos#emka», 1974, № 19, s. 63. 
7. Meshherjakov G. A., Marchenko A. N. Mul'tipol'noe istolkovanie osnovnyh osobennostej figury geoida. — «Geodezija i kartografija», 1976. № 6, 14. s. 
8. Kilczer i. Die geometrische. Structur des erdmagnetischen Quadrupolmoment—Tensors— «Gerlands Beiträge zur Geophysik», 1964, v. 73, 290 p. 
9. Kommereil d. Vorle¬sungen über analytishc Geometrie des Raumes. Leipzig, 1953. 10. Maxwell G. /. A treatise on Electricity and Magnetism. V. 1, 2 nd edition. Oxford, 1881, 214 p.