Purpose. The purpose of this work is to study the possibility of restoring urban traverse networks using high-precision technologies in satellite mode, real-time kinematics. Method. To achieve this goal were involved surveying six teams that were equipped with six receivers of different manufacturers. The observations were made as the "static" and in RTK-mode, and, determining the coordinates of points traverse the network Chernihiv mode performed by permanent RTK networks with different configurations and mount points. Working observations conducted by specialists of the Research Institute of Geodesy and Cartography by the software. After receiving the coordinates of points traverse the network Chernihiv in different systems and known points in the local system was modeled 11 pairs of lines, analysis of changes in the length of which was performed for each coordinate system. Results. The results of this study are: referenсe listed in the state system of coordinates USC-2000 transformation coordinates the network of geocentric spatial rectangular planein Gauss-Kruger in relevant areas; calculated the coordinates of points in SC-42 and SC-63; obtained the mean square error of coordinate definitions with different RTK configurations; analyzed the coordinate value deviations local points traverse the network in different coordinate systems; the analysis of the results of feasibility studies on the use and the possibility of restoring urban traverse networks during the survey and inventory and cadastral works in the settlement with modern RTK technology. Scientific novelty. Analyzing the results of studies established: the high accuracy of the coordinates of receipt of amendments configuration automax of permanent stations and Chernihiv with minor base 10 km distance; average values of deviations between the coordinate values in USC-2000 and the local coordinate system SC-63k and SC-63 are in the range of 0,287 to 0,346 m with an average square error 0,037–0,068 m; the maximum deviation of 0.726 and -0.684 differences in the lengths of lines USC-2000 and SC-63 and between the MSC and SC-42k; distortion of lengths of lines reaches an average of 0,30–0,35 m between the values obtained in the coordinate system USC-2000 and MSC and SC-63; installed error of coordinates of points traverse the network Chernihiv, namely 0,025 m; investigated a discrepancy between the local coordinate system and the SC-42k, which on average is, 0,32 m and corresponding deformation due to network in SC-42 / SC-63 does not provide the required accuracy of conversion options in the local coordinate system; the analysis of study results in the local coordinate system definitions and SC-63 when the error mean square of 0,001 m, indicates the close relationship of law and to establish local coordinate systems for the purpose of minimum distortion Gauss-Kruger and ease of use; the technique of high field of satellite observations using RTK-technology. Practical significance. The results of the studies demonstrated the feasibility of using and the ability to restore existing urban traverse networks using the highly accurate satellite technology kinematics mode in real time. It was established that during the survey and inventory and cadastral works in the settlement using RTK technology provides reliable precision observations. The value of the distortion geodetic network within the settlement area of 100 km2 will be insignificant – within ± 0,03m. Studies have shown that using a coordinate system SC-42 in combination with the satellite technology does not create a significant distortion coordinate territorial definitions and not complicate the process of doing local geodetic work. It should be noted that the City polygonometry points obtained in the local coordinate system and the SC-63 can deliver tangible, to 0.35 m., Distortion geodetic network. So, in the territory of Chernigov local coordinate system creates a local geodetic network and provided its thickening (recovery) RTK-modern technology can be used during the survey and inventory and cadastral.
1. Baranovs`ky`j V., Karpins`ky`j Yu., Kucher O., Lyashenko A. Topografo-geodezy`chne ta kartografichne zabezpechennya vedennya Derzhavnogo zemel`nogo kadastru. Sy`stemy` koordy`nat ta kartografichni proekciyi [Topographic and geodetic and cartographic software of the State Land Cadastre. The coordinate systems and map projections]. Kyiv, 2009, 95 p.
2. Instrukciya z topografichnogo znimannya u masshtabax 1 : 5000, 1 : 2000, 1 : 1000 ta 1 : 500 [Instructions topographic removal in the scale of 1 : 5000, 1 : 2000, 1 : 1000 and 1 : 500] (GKNTA – 2.04 – 02 – 98). Kyiv, 1998.
3. Kucher O., Stopkhai Yu., Vysotenko R..O. Renkevych Vprovadzhennia derzhavnoi heodezychnoi referentsnoi systemy koordynat Ukrainy – USK-2000 [Implementation of state geodetic coordinate system referentsnoyi Ukraine – USC 2000]. Zb. nauk. prats mizhnar. konf. "Novitni dosiahnennia heodezii, heoinformatyky ta zemlevporiadkuvannia – Yevropeiskyi dosvid" [Latest achievements geodesy, geoinformatics and land management – the European experience]. Chernihiv: Chernihivski oberehy. issue 4, 2008, pp. 25–30
4. Savchuk S., Zademleniuk A., Piskorovskyi A. Eksperymentalni doslidzhennia tochnosti vyznachennia koordynat metodom RTK z vykorystanniam GPRS Internet ziednannia [Experimental study of accuracy of the coordinates by RTK using GPRS Internet connection]. Zb. nauk. pr. "Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva" [Modern achievements of geodetic science and industry]. Lviv: Lviv Polytechnic Publishing House. issue.I (17), 2009, pp. 58–69.
5. Savchuk S. H., Kerker V. B. Metodyka i poperedni rezultaty eksperymentalnykh doslidzhen efektyvnosti vykorystannia syhnaliv GLONASS pid chas RTK vymiriuvan [Methodology and preliminary results of experimental research efficiency GLONASS signals during RTK measurements ]. Zb. nauk. pr. "Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva" [Modern achievements of geodetic science and industry]. Lviv: Lviv Polytechnic Publishing House, 2011, V.75, pp. 25–30.
6. Savchuk S., Zademlenyuk A., Vovk R. Vy`znachennya koordy`nat punktiv u sy`stemi USK-2000 iz GPS – sposterezhen` [Determination of coordinates of points in the system USC-2000 with GPS – observations]. Zb. nauk. pr. "Suchasni dosyagnennya geodezy`chnoyi nauky` ta vy`robny`cztva" [Modern achievements of geodetic science and industry]. Lviv: Lviv Polytechnic Publishing House, 2012, V.II(24), pp. 57–60.
7. Tereshchuk O., Savchuk S. Proekt merezhi aktyvnykh permanentnykh GPS-stantsii Pivnichnoho rehionu Ukrainy [Project active network of permanent GPS-stations of the Northern region of Ukraine]. Zb. nauk. prats mizhnar. konf. "Novitni dosiahnennia heodezii, heoinformatyky ta zemlevporiadkuvannia. Yevropeiskyi dosvid" [Latest achievements geodesy, geoinformatics and land management – the European experience]. Chernihiv: Chernihivski oberehy. 2007, pp. 16–23.
8. Tereshchuk O. I., Nystoriak I. O. Analiz GNNS – sposterezhen u Pivnichnomu rehioni Ukrainy [Analysis GNNS – observations in the Northern region of Ukraine]. Mistobuduvannia i terytorialne planuvannia [Town planning and spatial planning]. No. 48, 2013, pp.43–451.
9. Trevogo I. S., Lity`ns`ky`j V. O., Gazdag M. L. Tochnist` poligonometriyi: zgushhennya merezhi v zalezhnosti vid tochnosti kutovy`h vy`miryuvan` [Accuracy polygonometry: thickening network depending on the accuracy of angular measurement]. Visny`k geodeziyi ta kartografiyi. 2013. no 1, pp. 14–15.
10. Chernyaga P., Kubax S. Perevagy` ta nedoliky` rizny`x sy`stem koordy`nat ta geodezy`chny`x proekcij pid chas vedennya zemel`nogo kadastru [Advantages and disadvantages of different geodetic datums and projections in the land cadaster]. Suchasni dosyagnennya geodezy`chnoyi nauky` ta vy`robny`cztva [Modern achievements of geodetic science and industry], Lviv, 2010, issue II (20), pp. 62–66.
11. Yatskiv Ya. S., Kharchenko V. P., Shokalo V. M., Tereshchuk O. I., Zhalilo O. O, Kondratiuk V. M., Lukianov O. M., Lytvyn M. O., Shelkovienkov D. O., Kutsenko O. V., Zhelanov O. O., Hrinchenko O. V., Hazniuk M.O., Vyshniakova Ye. V. Informatsiino-vymiriuvalna GNSS systema ta merezhna VRS tekhnolohiia zabezpechennia heodezychnykh i kadastrovykh ziomok [Information-measuring system and network GNSS VRS technology providing geodetic and cadastral surveying ]. Zb. nauk. prats mizhnar. nauk.-prakt. konf. "Novitni dosiahnennia heodezii, heoinformatyky ta zemlevporiadkuvannia. Yevropeiskyi dosvid" [Latest achievements geodesy, geoinformatics and land management – the European experience]. Chernihiv: Chernihivski oberehy. 2008, issue. 4, pp. 5–24.
12. Shlapak V. Tereshhuk A., Nystoriak I., Zhalilo A., Zhelanov A., Dickij I., Bessonov E. Issledovanie otechestvennoj tehnologi obrabotki i analiza GNSS-nabljudenij [Investigation of domestic processing and analysis of GNSS-observations]. Izvestija vysshih uchebnyh zavedenij. Serija Geodezija i ajerofotosemka [News of higher educational institutions. A series of Geodesy and aerial photography], 2014.
13. Fritsche M., Rodriguez-Solano C., Steigenberger P., Sosnica K., Wang K., Dietrich R., Hugentobler U., Dach R., Rothacher M. Impact of GLONASS in a rigorous combination with GPS, International Association of Geodesy, Scientific Assembly 150th Anniversary of the IAG. Book of Abstracts. September 1-6, 2013, Potsdam, p.62.
14. Jaroslav Šimek, Jan Kostelecky. Modern Geodetic network and datum in Europe. FIG Working Week 2000, 21–26 May, Prague, Abstracts.
15. Ohta Y., Miura S., Hino R., Kobayashi T., Tsushima H. Real-time crustal deformation monitoring alghorithm based on RT K-GPS: Application to 2011 Tohoku earthquake and its improvement for implementation to actual GPS network, International Association of Geodesy, Scientific Assembly 150th Anniversary of the IAG. Book of Abstracts. September 1–6, 2013. Potsdam, p. 185.
16. Tatevian S., Kuzin S. On the use of GLONASS for precise positioning and geodynamic studies. International Association of Geodesy, Scientific Assembly 150th Anniversary of the IAG. Book of Abstracts. September 1-6, 2013, Potsdam, p. 294.
17. Internet resources network ZAKPOS. Mode of access: http://zakpos.zakgeo.com.ua/. 33 Internet resources network SMARTNET Leica Geosystems. Mode of access: http://smartnet.leicageosystems.us/coverage_ network.cf.
18. Internet resources http://smartnet.leica-geosystems.us/coverage_network.cfm
19. Internet resources (http://itrf.ensg.ign.fr/ITRF_solutions/2008/tp_08-05.php)