Purpose. Solids microsurface digital images obtained with scanning electron microscopes (SEM) are characterized by significant geometric distortions, which must be defined and taken into account when determining the quantitative parameters of microsurface solids with high accuracy. Therefore, this problem is so important and urgent, especially during the high-tech quality control of production processes using nanotechnology, particularly in mechanical engineering, aircraft construction, and for creating space and military equipment. It is also important to perform SEM images measurements and obtain quantitative parameters of the studied microsurface in automatic mode that would allow processing of the data much faster without operator intervention. Therefore, the aim of this work was to develop and research the effective technology for automated calibration and account for the SEM images geometric distortion as well as the creation of a software package that would implement it. Methods. Digital SEM images processing and their transformations were used to automate the measurement. Results. The developed automation technology for digital SEM images measurement was tested and studied in the treatment of SEM images of the reference test object with a resolution of r = 1425 lines/mm, obtained with SEM using the JCM-5000 (NeoScope) in the range of magnifications from 1,000x to 15,000x. Accuracy and quantified characteristics of SEM images, in particular, their scales along the axes of the image, as well as their geometric distortion, are comparable to measurements made by hand. Automation of this process eliminates monotonous work, especially in the processing of SEM images in a range of relatively small increases in M=1000h-5000h, significantly reducinge the measurement time, and avoiding human errors that can occur. Scientific novelty. The developed technology for automation of the measurement of digital SEM images and to determine their geometric parameters is executed for the first time in Ukraine. The proposed technological measurement automation scheme of SEM images, and the creation of this authoring software show its efficiency and expediency. The practical significance. This technology allows you to automatically and accurately determine the true value of the SEM images increase (scale), the value of their geometric distortion. These values use determine with high accuracy of the quantitative spatial parameters of micro surface solids to increase the reliability end efficiency devices, mechanisms, and materials made from them.
1. Ivanchuk O. M., Khrupin I. V. Struktura ta funkcii prohramnoho kompleksu "Dimicros" dlja opracjuvannja REM-zobrazhen na cufrovij fotohrammetrychnij stanciji [Structure and function of the program complex "Dimicros" processing of SEM images on a digital photogrammetric station], Recent advances in geodetic science and industry, Lviv, 2012, issue 1(23), pp. 193–197.
2. Ivanchuk O. M. Doslidzhennja tochnosti vyznachennja dijsnych velychyn zbilshennja (masshtabu) cyfrovych REM-zobrazhen, otrymanych na REM JCM-5000 (NeoScope) firmy JEOL [Investigation of the accuracy of the actual values increase (scale) digital SEM images obtained by REM JCM-5000 (NeoScope) company JEOL], Geodesy, cartography and aerial photography, Lviv, 2012, issue 76, pp. 80–84.
3. Ivanchuk O. M., Barfels T., Heeg J., Heger W. Doslidzhennja velychyn heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na REM DSM-960A (Carl Zeiss, Nimechchyna) ta tochnosti jich vrachuvannja [Research quantities of geometric distortion of digital SEM images obtained by SEM DSM-960A (Carl Zeiss, Germany) and the accuracy of their incorporation], Geodesy, cartography and aerial photography, Lviv, 2013, issue 78, pp. 120–126.
4. Ivanchuk O. Doslidzhennja heometrychnykh spotvoren cyfrovykh REM-zobrazen, otrymanykh na REM JCM-5000 (NeoScope) ta jikh aproksymacija [Researching geometric distortion digital SEM images obtained on SEM JCM-5000 (NeoScope) and their approximation], Scientific Papers of Donetsk National Technical University. Series: geological. Donetsk, 2013. Vol. 1 (18), pp. 91–97.
5. Ivanchuk O., Chekajlo M. Doslidzhennja pokhybok zbilshennja (masshtabu) cyfrovykh REM-zobrazhen, otrymanykh na REM-106I (Sumy, Ukraina) za dopomohoju specialnykh test-objektiv [Research errors increase (scale) digital SEM images obtained on SEM-106I (Sumy, Ukraine) with special test facilities], Geodesy, cartography and aerial photography, Lviv, 2014, issue 79, pp. 82–88.
6. Ivanchuk O. Doslidzhennja heometrychnykh spotvoren cyfrovykh REM-zobrazen, otrymanykh na REM-106I (Sumy, Ukraina) [Researching geometric distortion digital SEM images obtained at the REM-106 and (Sumy, Ukraine)], Recent advances in geodetic science and industry, Lviv, 2014, issue II(28), pp. 74–77.
7. Ivanchuk O. Osoblyvosti kalibruvannja heometrychnykh spotvoren cyfrovykh REM-zobrazhen, otrymanykh na riznykh REM [Features Calibration geometric distortion of digital SEM images obtained at different REM], Recent advances in geodetic science and industry, Lviv, 2015, issue I(29), pp. 168–173.
8. Ivanchuk O. Doslidzhennja heometrychnykh spotvoren cyfrovykh REM-zobrazen, otrymanykh na REM JSM-7100F (JEOL, Japonija) ta tochnist jikh aproksymaciji [Researching geometric distortion of REM-digital images obtained on SEM JSM-7100F (JEOL, Japan) and the accuracy of approximation], Geodesy, cartography and aerial photography, Lviv, 2015, issue 81, pp. 101–109.
9. Kostyshyn M. T., Mustafin K. S. Kvantovaja elektronika [Quantum Electronics], Kyiv, 1982, issue 23, pp. 29–33.
10. Kalantarov E. I., Sagyndykova M. Zh. Photogram-metricheskaja kalibrovka electronnych microskopov [Photogrammetric calibration of electron micro-scopes], Proceedings of the universities. Surveying and aerial photography, Moskow, 1983, issue4, pp. 76–80.
11. Melnik V. N., Sokolov V. N., Ivanchuk O. M., Tumskaja O. V., Shebatinov M. P. Kalibrovka geometric-heskikh iskazhenij REM-snimkov [Calibration of geometric distortion SEM images], Manuscript deposited at VINITI, Moskow, 1984, issue 528, 18 p.
12. Melnik V. M., Shostak A. M. Rastrovo-elektronna stereomikrofraktohrafija [Raster electron stereo-mikro¬fraktografition], Luck, Vezha, 2009, 469 p.
13. Finkovsky V. J., Melnik V. N., Ivanchuk O. M. K teorii photogrammetricheskoj obrabotki REM-snimkov [Theory of photogrammetric processing of SEM images], Geodesy and Cartography, Moscow, 1984, issue 2, pp. 29–33.
14. Shostak A.V. Metody i modeli mikrophotogrammetrii u prukladnych naukovych doslidzhennjach. Dokt. Diss. [Methods and models mikrophotogrammetry in applied research. Doct. Diss]. Kyiv, 2012, 28 p.
15. Boyde A., Ross H. F. Photogrammetry and Scanning electron microscopy. Photogrammetric Record, 1975, Vol.8, no. 46, pp. 408–457.
16. Burkhardt R. Untersuchungen zur kalibrirung eines Elektronen mikroskopes. Mitt. geod. Inst. Techn. Univ. Graz. 1980, no. 35.
17. Cromley R. G. Digital Cartography. Robert G. Cromley, 1992 by Prentice-Hall. 317 p.
18. Ghosh S. K. Photogrammetric calibration of a scanning electron microscope. Photogrammetria, 1975, Vol. 31, no. 31, pp. 91–114.
19. Ghosh S. K., Nagaraja H. Scanning Electron Micro-graphy and Photogrammetry. Photogrammetric Engineering and Remote Sensing. 1976, Vol. 42, no. 5, pp. 649–657.
20. Gonzalez R. С, Woods R. E. Cyfrovaja obrabotka izobrazhenij [Digital Image Processing]. Moscow, Tekhnosfera, 2005, 1072 p.
21. Gonzalez R. С., Woods R. E., Eddins S. L. Cyfrovaja obrabotka izobrazhenij v srede MATLAB [Digital Image Processing using MATLAB]. Moscow, Technosfera, 2006, 616 p.
22. Howell P. A practical method for the correction of distortions in SEM photogrammetry. Proc. Of the Annual Scanning Electron Microscope Symposium. Chicago, Illinois. 1975, pp. 199–206.
23. Mandelbrot B. The fractal geometry of nature. N. Y.: Freeman, 1983. 469 p.
24. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man. 1979. Cyber. 9, pp. 62–66.
25. Richardson L. The Problem of Contiguity: An Appendix of Statistic of Deadly Quarrels. General Systems Year Book. 196, 6, pp. 139–187.
26. http://matlab.exponenta.ru/imageprocess/book2/index.php I. M. Zhuravel. Kratkij kurs teorii obrabotki izobra¬zhenij [A short course of image processing theory].
27. http://www.imagemagick.org/Usage/morphology/ ImageMagick v6 Examples – Morphology of Shape