Method of Stabilizing Technologically Optimal Parameters of Vibration Field of Adaptive Vibrating Technological Machines by Means of Neural Network Pid Regulator

2021;
: pp. 52 - 61
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University
3
Department of Strength of Materials and Structural Mechanics, Lviv Polytechnic National University,

Aim. Development of the optimal method of controlling the dynamic parameters of vibratory drives of adaptive vibrating technological machines (AVTM). Method. The work is based on the creation of a direct neural network model of AVTM and the use of hybrid neuro-PID control technology to form a corrective effect based on the proportional-integral-differential law at each control cycle, to minimize feedback error on the amplitude of vibration of the vibrating machine. Results. A control method has been developed that allows to ensure the resonant mode of AVTM operation due to constant correction of the cyclic forcing force of the vibrating drive on the basis of a direct AVTM neuroemulator. Scientific novelty. For the first time, a block diagram, mathematical model and simulation of a hybrid neuro-boundary PID controller based on a direct AVTM neuro-emulator to stabilize the specific operation of the vibration field of vibrating machines at a resonant operating frequency. Practical significance. The proposed method of stabilizing the technologically optimal parameters of the vibration field allows to ensure minimal energy consumption for the vibratory drive with stable technologically optimal parameters of the vibration field of the adaptive vibrating process machine throughout the technological cycle of vibration processing.

  1. Chubyk R.V., Yaroshenko L.V. Kerovani vibratsiyni tekhnolohichni mashyny [Controlled vibrating technological machines]: monograph. – Vinnytsya.: VNAU, 2011. – 355 s. [In Ukrainian]
  2. P.S. Bernyk, R.V.  Chubyk, V.A. Pashystyy.  Sposib  keruvannya robotoyu  mashyny iz kolyvnymy rukhamy robochykh orhaniv. [“The method of controlling the operation of the machine with oscillating movements of the working bodies”] UA. Patent 10971, January, 2005. [in Ukrainian].
  3. Chubyk R.V., Yaroshenko L.V. Metod stabilizatsiyi tekhnolohichno optymalʹnykh parametriv vibratsiynoho polya adaptyvnykh vibratsiynykh tekhnolohichnykh mashyn [“Method of stabilization of technologically optimal parameters of vibration field of adaptive vibrating technological machines”] // Vibratsiyi v tekhnitsi ta tekhnolohiyakh [Vibrations in technique and technologies], vol. 2 (51), pp. 57-60, 2008 [in Ukrainian].
  4. R.V. Chubyk, YU.YU. Skvarok, I.D. Zelinsʹkyy Optymizatsiya roboty adaptyvnykh vibratsiynykh tekhnolohichnykh mashyn za kryteriyem rozpovsyudzhennya vibratsiyi u vibrokypʺyachomu shari [“Optimization of operation of adaptive vibrating technological machines by the criterion of vibration propagation in the vibrating fluidized bed”] // Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrolʹ u mashynobuduvanni [Optimization of production processes and technical control in mechanical engineering], vol. 822, pp. 19-23, 2015, [In Ukrainian].
  5. Tayanov S.A., Chubyk R.V. Analiz kryteriyiv dlya keruvannya adaptyvnymy vibratsiynymy tekhnolohichnymy mashynamy [“Analysis of criteria for control of adaptive vibrating technological machines ”] // Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni [“Automation of robotic processes in machines”]. vol. 43, pp. 99-105, 2008 [in Ukrainian].
  6. Chubyk R.V. Identyfikatsiya kryteriyiv dlya enerhozberihayuchoho keruvannya vibropryvodamy adaptyvnykh vibromashy [“Identification of criteria for energy-saving control of vibratory drives of adaptive vibrating machines”] /R.V. Chubyk, I.D. Zelinsʹkyy // Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni [“Automation of robotic processes in machines”]: vol. 49, pp. 107-111, 2015 [in Ukrainian].
  7. Khaykin S.E. Fizicheskiye osnovy mekhaniki [“Physical foundations of mechanics”]. - M.: Nauka, 1971. - 751 s. [In Russian].
  8. Povidaylo V.O. Vibratsiyni protsesy ta obladnannya [“Vibration processes and equipment”]. - Lʹviv: Vydavnytstvo NU "Lʹvivsʹka politekhnika", 2004. – 248 s [in Ukrainian].
  9. A.N. Chernodub, D.A. Dzyuba Obzor metodov neyroupravlenyya [“Review of neuromanagement methods”]. // Problemy prohramuvannya. 2011. - № 2. - S. 79-94[in Ukrainian].
  10. Omatu S., Khalid M., Yusof R. Neyro-upravleniye i yego prilozheniya: per. s angl [“Neurocontrol and its applications: translation from English.”]. – M.: IPRZHR, 2000. – 272 s [in Russian].
  11. D’Emilia G., Marrab A., Natalea E. Use of neural networks for quick and accurate auto-tuning of PID controller // Robotics and Computer-Integrated Manufacturing. – 2007. – Vol. 23. – P. 170 – 179.
  12. Saiful A., Omatu S. Neuromorphic self-tuning PID controller // Proceedings of IEEE Interna-tional Conference on Neural Networks, San Francisco, USA, 1993. – P. 552 – 557.
  13. Chang W.D., Hwang R.C., Hsiehc J.G. A multivariable on-line adaptive PID controller using auto-tuning neurons// Engineering Ap-plications of Artificial Intelligence. – 2003. – Vol. 16, Issue 1. – P. 57 – 63.
  14. Tan Y., De Keyser R. Auto-tuning PID control using neural predictor to compensate large time-delay // Proceedings of the Third IEEE Conference on Control Applications. – 1994. – Vol. 2. – P. 1429 – 1434.
  15. Chubyk R.V., Zraylo N.M. Cymetrychnyy elektromekhanichnyy vibropryvod dlya enerhozberihayuchykh adaptyvnykh vibromashyn [“Symmetric electro-mechanical vibrodrive for power-saving adaptive vibro-machines”]. Elektromekhanichni i enerhozberihayuchi systemy [“Electromechanical and energy saving systems”]. – Kremenchuk: KrNU, vol. 3 (31), pp. 61-67, 2015 [in Ukrainian].
  16. Stadnyk N.Y., Yaroshenko L.V., Solona E. V., Chubyk R.V. Upravlyaemyy élektromekhanycheskyy symmetrychnyy pryvod dlya vybratsyonnykh tekhnolohycheskykh mashyn [“Controlled electromechanical symmetric drive for vibrating technological machines”]. // Vibratsiyi v tekhnitsi ta tekhnolohiyakh [Vibrations in technique and technologies], vol. 3 (90), pp. 117-126, 2018 [in Russian].