Determination of the Optimal Parameters of the Pulse-width Modulated Voltage for Powering the Electromagnetic Vibration Drive

2022;
: pp. 96 - 105
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University
3
Lviv national environmental university

Goal. To determine the optimal parameters of various types of pulse-width modulated (PWM) voltage, which is used in the control systems of the electromagnetic vibration drive to create resonant vibrating machines and control the parameters of the working body of the vibrating machine in the resonant mode. Method. The work is based on the analysis of the spectrum of the main three forms of PWM signals in their low-frequency region, to which the oscillating mechanical system of vibrating machines responds. To estimate the PWM-encoded sine wave corresponding to the resonant frequency of the vibrating machine, the mean square deviation was used in the time domain, and the nonlinear distortion coefficient (harmonic) was used in the spectral domain. Results. The results. A mathematical apparatus was built and a connection was established between the oscillating mechanical system of the vibrating machine, the external PWM parameters and the characteristics of the sinusoidal signal encoded by it in the time and spectral domains. Scientific novelty. For the first time, a mathematical model was obtained and the influence of the parameters of the oscillating mechanical system of the vibrating machine and the carrier frequency of the pulse-width modulated voltage on the root-mean-square deviation and the coefficient of nonlinear distortions (harmonics) of the signal feeding the electromagnetic vibration drive was simulated. Practical significance. A technique for calculating the carrier frequency of the PWM sinusoidal voltage is proposed, which can be used to develop an algorithm for controlling power switches (transistors) and choosing the type of power switches at the stage of designing the power part of control systems with an electromagnetic vibration drive of controlled and adaptive vibration machines.

  1. Chubyk R. V., Yaroshenko L. V. (2011). Kerovani vibratsiyni tekhnolohichni mashyny : monograph. Vinnytsya : VNAU. 355 р. [In Ukrainian].
  2. Zelinskyy I. D. (2003). Systema keruvannya elektromahnitnym vibrozbudnykom. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni: ukrayinskyy mizhvidomchyy naukovo- tekhnichnyy zbirnyk, Vol. 37, Рp. 3-7 [In Ukrainian].
  3. Z. Despotovic, A. Ribic. (2012). The increasing energy efficiency of the vibratory conveying drives with electromagnetic excitation. International Journal of Electrical and Power Engineering, №6 (1), Pр. 3-42.
  4. Chubyk R. V. (2007). Matematychni modeli dvopolyarnykh shyrotno-impulsno modulovanykh syhnaliv dlya zhyvlennya elektromahnitnykh vibropryvodiv adaptyvnykh vibratsiynykh tekhnolohichnykh mashyn. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, Vol. 3 (48), Рp. 18-22 [In Ukrainian].
  5. Chubyk R. (2009). Optimal ruling system of electromagnetic vibrodrive of adaptive vibrational technological machines. Vibroengineering, Proceedings of the 8th International Conference, Klaipeda, Lithuania, September 16-18, Рр. 10-14.
  6. Chubyk R., Zelinsky I., Cherno O. (2021). Neurocontroller for vibrodrive control of adaptive vibration technological machines. IEEE 2nd KhPI Week on Advanced technology: conference proceedings, Kharkiv, 13-17 September, P. 278-282.
  7. A. A. Cherno. (2017). Control of electromagnetic vibratory drive using a phase difference between current harmonics. Journal of automation and information sciences, Vol. 49, Issue 7, Рp. 58-76.
  8. V. Sinik, Z. Despotovic, I. Palinkas. (2016). Optimization of the operation and frequency control of electromagnetic vibratory feeders. Elektronika ir Elektrotechnika, №1, Vol. 22. Pр. 24-30.
  9. Chubyk R. (2011). Investigation of current parameter in electro-magnettic drive of resonance adaptive vibromachines while using the duopolar latitude-impulsive voltage for its power supply. VIBROENGINEERING. Journal Of Vibroengineering, Vol. 13, Issue 2, Р. 295-301.
  10. Havrylchenko O. V., Tayanov S. A., Chubyk R. V. (2003). Analiz pokhybky formy ta chastoty pry formuvanni synusoyidalnoho syhnalu z dopomohoyu SHIM dlya systemy keruvannya vibrotransporterom. Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrol u mashynobuduvanni ta pryladobuduvanni engineering, Vol 480, Рp. 47-52 [In Ukrainian].
  11. Havrylchenko O. V., Tayanov S. A., Chubyk R. V. (2004). Analiz koefitsiyentu neliniynykh spotvoren synusoyidalnoho syhnalu systemy keruvannya SHIM vibrotransporterom pry vidsutnosti filtriv zhyvlennya. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni, Vol. 38. Рp. 104-109 [In Ukrainian].
  12. Havrylchenko O. V., Tayanov S. A., Chubyk R. V. (2004). Analiz koefitsiyentu neliniynykh spotvoren synusoyidalnoho syhnalu pry keruvanni amplitudoyu SHIM synusoyidy za dopomohoyu zminy shparystosti. Teploenerhetyka. Inzheneriya dovkillya. Avtomatyzatsiya, Vol  506, Рp. 183-187 [In Ukrainian].
  13. Bernyk P. S., Chubyk R. V., Tayanov S. A. (2005). Matematychna model syhnalu na vykhodi sylovoyi chastyny systemy keruvannya na bazi SHIM vibratsiynymy tekhnolohichnymy mashynamy. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, Vol. 1 (39), Рp. 1-7, 2005 [In Ukrainian].
  14. Zelinskyy I. D. (2010). Shvydkyy alhorytm formuvannya SHIM-kodu dlya systemy keruvannya elektromahnitnym vibrozbudnykom. Optymizatsiya vyrobnychykh protsesiv i tekhnichnyy kontrol u mashynobuduvanni ta pryladobuduvanni, Vol. 679, Рp. 98-101 [In Ukrainian].
  15. Tayanov S. A., Chubyk R. V. (2008). Doslidzhennya zakonu rukhu adaptyvnoyi vibratsiynoyi tekhnolohichnoyi mashyny pry vykorystanni pryamokutnoyi shyrotno-impulsno modulovanoyi tsyklichnoyi vymushuyuchoyi syly dlya yiyi zburennya // Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvanni ta pryladobuduvanni, Vol. 42, Рp. 174-185  [In Ukrainian].