: pp. 83-88
Lviv Polytechnic National University
Lviv Polytechnic National University

Hidden defects can turn into obvious defects and characteristics of electronic elements become inappropriate. Therefore, the techniques of non-destructive diagnostics of inner structure state are of great importance. One of these techniques is the diagnostics of electronics by their own noise, which advantageously differs by low time consuming and absence of the risk of damage of the element under investigation. Noise measurements are capable to detect the defects in a material with a sensitivity that cannot be reached by other methods.

The results of computer simulation of noise for different models of its internal structure are presented. The simulation was carried out in order to reveal the influence of the internal structure elements of the system under study on the level of its noise at low frequency range. It is shown that systems with fewer structural elements have lower noise level at low frequencies concerning the systems  that comprise more elements. The results of  the simulation also demonstrate  that systems with  the same number of structure  elements  are  inherent  in  different  noise  levels  in  low  frequency  range:  systems with  an  ordered  arrangement  of  the elements are the less noisy then more disordered omes. 

The  results  of  noise  studies  of metal  films,  composite  resistors  and  semiconductor  diodes  at  low-frequency  range  are presented.  It is noted  that noise of composite  resistors at  low  frequencies is greater  than noise of  the metal  film resistors  for  the same  scattering  power  (0,125 watts). The  noise  of  the  diodes  at  low  frequencies  is much  larger  than  the  resistors  noise.  The increase in noise for diodes can be explained within the hypothesis of the substantial influence of the internal structure of the test sample. 

Analytical expression of  the energy spectrum of  the own noise of electronic element, which parameter τ depends on  the features of the internal structure, is presented. It has been shown that the detection of potentially unreliable elements can be carried out either by the level of their own noise at the low-frequency band or by the value of the parameter τ.

[1] N. Mielke, R Frickey, I. Kalastirsky, M. Quan, D. Ustinov, V. Vasudevan, “Reliability of Solid-State Drives Based on NAND Flash Memory”, Proc. of the IEEE, vol.105,  iss. 9, p.1725-1750, 2017.

[2] V. Kharchenko, “Problems of reliability of electronic components”, Modern  Electronic Materials,  vol.1,  iss.3,  p.88-92, 2015.

[3]  M.  Farhadi,  M.  Abapour,  B.  Mohammadi-Ivatloo,”Reliability  analysis  of  component-level  redundant topologies  for  solid-state  fault  current  limiter”,  Int.  Journ. Electronics, vol.105, iss..4, p.541-558, 2018.

[4]  C.  Claeys,  E.  Simoen,  S.  Put,  G.  Giusi  ,  F.  Crupi, “Impact strain engineering on gate stack quality and reliability”,  Solid-State Electronics, vol.52, p.1115–1126, 2008.

[5]  H.  Pon,  J.  Dayacap,  R.  Frickey,  “Reliability  issues studied  in  Solid-State  Drives”,  Memory  Workshop  IEEE  6th International, May 18-21, 2014.

[6]  R.  Amy,  G.  Aglietti,  G.  Richardson,  “Reliability analysis of electronic equipment subjected to shock and vibration – A review”,  Shock and Vibration, vol.16, p.45–59, 2009.

[7] Nondestructive  Testing  in Electronics Manufacturing. [Online]. Available: http://poeth.com/.

[8]  A.  Konczakowska,  B.  Wilamowski.  Noise  in Semiconductor  Devices.  2010  [Online].  Available: www.eng.auburn. edu/~wilambm/pap/.../K10147_C011.pdf

[9] R. Harsh, K. Narayan, “Noise spectroscopy of polymer transistors”, Journ. Appl. Phys., vol.118, p.205502, 2015.

[10] A. Szewczyk,  L. Łentka,  J. Smulko, P. Babuchowska,  F. Béguin,  “Measurements  of  flicker  noise  in  supercapacitor cells”,  in Proc.  Int. Conf. on Noise and Fluctuations, June 20-23, 2017. DOI: 10.1109/ICNF.2017.7985985.

[11]  A.  Balandin,  K.L.  Wang,  S.  Cai,  R.  Li,  C.R. Viswanathan, E.N. Wang, M. Wojtowicz, “Investigation of Flicker oise  and  Deep-Levels  in  GaN/AlGaN  Transistors”,  J.  Electron. Materials, vol.29, p.297, 2000. 

[12] M. Kayyalha,.Yo. Chen, “Observation of reduced 1/f noise  in  graphene  field  effect  transistors  on  boron  nitride substrates”, Appl. Phys. Let., vol.107, p.113101, 2015.

[13] E. Simoen, M. Aoulaiche, S. dos Santos et al, “Low-Frequency  Noise  Studies  on  Fully  Depleted  UTBOX  Silicon-on-Insulator  nMOSFETs:  Challenges  and  Opportunities”,  ECS  J. Solid State Sci. Technol., vol.2(11), p.205-210, 2013.

[14] M. Mihaila, “On  the 1/f Noise and Energy Partition in Solid”, Rom.  Journ.  Inf. Sc. and Techn.,  vol.19, no.1-2, p.175-187, 2016.

[15]  H.  Kang,  V.  Subramanian,  “Measurement  and analysis  of  1/f  noise  under  switched  bias  in  organic  thin  film transistors”, Appl. Phys. Lett., vol.194, iss.2, 2014.

[16] Z. Kolodiy, A. Kolodiy, “Fluctuations of  flicker  type in  technical  and  natural  systems”,  in  Thesis  22nd  Int.  Conf.  on Noise Fluctuations, Corum de Montpellier, France,  p.131,   June 24-28, 2013, DOI:10.1109/ICNF.2013.6578927.

[18] G. Leroy, L. Yang, J. Gest, L. Vandamme, “Research on  the  properties  of  ZnO  films  by  1/f  noise measurement”,    in Thesis  22nd  Int.  Conf.  on  Noise  Fluctuations.  Corum  de Montpellier, France, p.48, June 24-28, 2013.

[19] Z.  Kolodiy,  “Flicker-noise  of  electronic  equipment: Sources, ways of reduction and application”, Radioelectronics and Communications Systems, vol.53, p.421-417, 2010.

[20] Z.  Kolodiy,  B..  Mandziy, “Calculation  of  Flicker Noise Power”, Automatic Control and Computer Sciences, vol.50, no.1, p.15-19, 2016.

[21] Z. Kolodiy,  “Detection of changes in the structure of a system according  to changes of  its  flicker noise”, Ukr. J. Phys., vol.53, no.7, p.718-722, 2008.