: pp.10-14
Lviv Polytechnic National University
Lviv Polytechnic National University, Department of specialized computer systems
Lviv Polytechnic National University, Department of Measuring Information Technologies

The analysis of implementation methodology of sound metric stations AZK-5 and AZK-7, which are adopted by the Armed Forces of Ukraine  and  some other  countries,  shows  that  this methodology provides  an  approximation of  the second-order  curve  –  hyperbola,  which  describes  the  location  of  the  target  by  its  asymptotic  rays.  This  approximation  provides simplification of algebraic and geodesic computing. Nevertheless, it causes the emergence of methodology error of target bearing process. 

The  implementation of  the geometrical model  for  acoustic base description provides  the development of  a mathematical model, which analytically describes the mentioned above error. Analysis of this mathematical model of methodic error envisages that its value can significantly exceed an instrumental error of involved sound metric stations if the distance to the target slightly exceeds the distance between sound receivers. The correction of this error is not provided by active methodology of sound metric station implementation. Also, analysis of error shows that it is systematical. Therefore, measurement of the target coordinates and counter-battery fire correction by the same sound metric stations provides significantly decreasing its influence on target hitting. 

However,  this error complicates the compatibility of measurement  results both with other sound metric stations and with other  types of  intelligence. Providing  the  compatibility  of measurement  results by  sound metric  stations with other  stations  and other types of intelligence demands the correction of the error of measurement method for the distances to the target less than 6–7 lengths of acoustic base or implementation of other, most exact methods of angle computation. 

[1]  A.  Kryvosheev,  V.  Petrenko,  A.  Pryhodko,  The basics  of  artillery  intelligence.  Sumy,  Ukraine:  Sumy  State university, 2014.

[2]  R. I. Shuliachenko, V. I. Kryvonosenko, The sound artillery ranging. Military publish house, Moscow, 1993.

[3]  P. E. Trofimenko,  U. H. Filipenko,  “The  sound intelligence  station  –  100  years”,  Journal  of  SummySU,  The series of technical sciences, iss. 3, 2009. 

[4]  O. V. Ustumenko, “Perspectives on the creation of reconnaissance and shock systems based on existing RSVF”, in Prosp.  for  development  of missile  troops  and  Artillery  of  the Ground Forces: Sc.Techn. Conf, pp. 203–206,  2014.

[5]  O.  І. Petliuk,  I. V. Petliuk, “Features of  the use of units  of  artillery  intelligence  during  combat  operations  during ATO”, in Prosp. for development of missile troops and Artillery of the Ground Forces: Sc.Techn. Conf., 2015. pp 114–115.

[6]  I. Makhno, “The officer of Ukraine”, Journal of the national  land  forces  academy  of  Petro  Sahaidachny,  iss.  6, 2014.

[7]  O. O. Furtes, O. O. Pototskiy, V. B. Riy, “Prospects for  the  development  of  the  counter-naive  struggle  of  the  Army Forces Army units”,  in Prosp.  for development of missile  troops and Artillery of the Ground Forces: Sc.Techn. Conf., p. 114, 2017.

[8]  R.  I.  Shuliachenko,  “The  sound  ranging  in  the artillery”. SPb, 1993. 

[9]  R. V. Kochan, B. R. Trembach, “Estimation of the error  of  measurement  of  the  angle  to  the  target  by  the distributed  system  of  sound  artillery  intelligence”, Measuring equipment and metrology, iss. 77, pp. 177–182, 2016.

[10]   S.  K.  Stein,   Calculus  and  analytic  geometry. McGraw-Hill Companies, 1987.

[11] A. Stepanenko  et  al.,  “Development of  a minimal IEEE  1451.1  model  for  microcontroller  implementation”,  in Proc. Sensors Appl. Symp., pp. 88–93, 2006.

[12]   V.  Hrusha  et  al.,  “Distributed  Web-based measurement  system”,  IEEE  Intel Data Acq.  and Adv. Comp. Systems: Techn and Appl., IDAACS, IEEE, pp. 355–358, 2005.

[13]   N.  Vasylkiv  et  al.,  “The  control  system  of  the profile  of  temperature  field”,  IEEE  Intel Data  Acq.  and  Adv. Comp.  Systems:  Techn  and  Appl.,  IDAACS,  IEEE,  pp.  201–206, 2009.

[14]   V. Kochan  et  al.  “Approach  to  improvement  the network  capable  application  processor  compatible  with  IEEE 1451 standard”, IEEE Intel Data Acq. and Adv. Comp. Systems: Techn and Appl.,  IEEE, pp. 437–441, 2003.