Lviv Polytechnic National University, Department of Computerized Automatic Systems
Lviv Politechnic National University

The proper detection and prevention of malfunctions are crucial in mitigating maintenance costs and equipment replacements for agricultural vehicles, ultimately reducing the expenses associated with crop cultivation. Predictive analytics for agriculture vehicles leverage machine learning and sensor data to anticipate equipment faults, optimize maintenance schedules, and enhance operational efficiency in the farming industry. It heavily relies on real-time data transmission to continuously monitor equipment performance, enabling timely identification of potential issues and preemptive maintenance actions to prevent costly breakdowns and downtime. This paper employs a qualitative analysis approach utilizing the Architecture Tradeoff Analysis Method to evaluate and select an optimal data protocol from a set of candidates, including SOAP, HTTP, REST, CoAP, Web- Socket, XMPP, MQTT, and AMQP. The analysis considers sensitivity points, tradeoff factors, risks, and quality attribute scenarios relevant to the usage scenarios. The findings indicate that MQTT is the preferred protocol for real-time data streaming in resource- constrained environments, contingent upon a reliable connection.

  1. Semernia K. V. Suchasni finansovo-ekonomichni prob- lemy funktsionuvannia ta rozvytku ahrarnykh pid- pryiemstv.Aktualni problemy sotsialno-ekonomichnykh system v umovakh transformatsiinoi ekonomiky: Zbirnyk naukovykh statei za materialamy IV Vseukrainskoi naukovopraktychnoi konferentsii (12–13 kvitnia 2018 r.) Chastyna 1. Dnipro: NMetAU, 2018. 367 p. Access mode:
  2. S. A. Al-Suhaibani, M. F. Wahby. Farm tractors break- down classification. Journal of the Saudi Society of Agri- cultural Sciences. Riyadh: King Saud University, 2017, 294–298. DOI: 10.1016/j.jssas.2015.09.005
  3. Global Network Against Food Crises. 2022 Global Report on Food Crises [Electronic resource]. FSIN, 2022, 5–10. Access mode: WFP-0000138913/download/
  4. R. Khodabakhshian. Prediction of repair and maintenance costs of farm tractors by using Preventive Maintenance. International Journal of Agriculture Sciences. Pune: Bio- info Publications, 2011, 39–42. DOI: 10.9735/0975-3710.3.1.39-44
  5. M. Xiao, W. Wang, K. Wang, W. Zhang, H. Zhang. Fault Diagnosis of High-Power Tractor Engine Based on Com- petitive Multiswarm Cooperative Particle Swarm Opti- mizer Algorithm. London: Hindawi, 2020, 1–13. DOI: 10.1155/2020/8829257
  6. Y. Lafon, C. Bournez. SOAP 1.2 Pressrelease [Electronic resource]. W3C, 2003. Access mode: https:// 
  7. S. Misra, A. Mukherjee, A. Roy. Introduction to IoT. – Cambridge: Cambridge University Press, 2021, 184–200. DOI: 10.1017/9781108913560
  8. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things / D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, J. Henry. Indianapo- lis, Indiana: Cisco Press, 2017, 177–204. ISBN: 978- 1587144561. Access mode: IoT-Fundamentals-Networking-Technologies-Protocols/dp/1587144565
  9. N. M. Shaikh, Y. Ingle. Application of Restful APIs in IOT: A Review. Haryana: iJRASET, 2021, p. 9. DOI: 10.22214/ijraset.2021.33013
  10. Alabbas Alhaj, A. Constraint Application Protocol (CoAP) for the IoT. Frankf. Univ. Appl. Sci., 2018, p. 1. DOI: 10.13140/RG.2.2.33265.17766
  11. Z. Shelby, K. Hartke, C. Bornamn. The Constrained Ap- plication Protocol (CoAP) [Electronic resource]. IETF, 2014. Access mode: doc/html/rfc7252
  12. I. Fette, A. Melnikov. The WebSocket Protocol [Elec- tronic resource]. IETF, 2011. Access mode:
  13. S. Vinoski. IEEE Internet Computing, Vol. 10, Iss. 6. Cyprus: University of Cyprus, 2006, 87–89. DOI: 10.1109/MIC.2006.116
  14. J. Barnitskyi. HTTP vs MQTT performance tests [Elec- tronic resource]. Flespi, 2018. Access mode: