An alloy of nominal composition Er30.8Re7.7Ge61.5 was synthesized by arc melting and investigated by X-ray powder diffraction. A new ternary germanide of approximate composition ErRe0.25Ge2 was found, which adopts the structure type CeNiSi2 (Pearson symbol oS16, space group Cmcm, a = 4.0997(4), b = 15.7348(18), c = 3.9921(5) Å, RB = 0.0355, refined composition ErRe0.23(2)Ge2, for the as-cast alloy; a = 4.1117(3), b = 15.6846(15), c = 4.0184(3) Å, RB = 0.0420, refined composition ErRe0.28(2)Ge2, after annealing at 1073 K). The coordination polyhedron of the Er atoms has 21 vertexes (hexagonal prism with nine additional atoms), the one of the Re atoms is a bicapped square antiprism and the two crystallographically independent Ge atoms center tricapped trigonal prisms and cuboctahedra. The crystal structure contains layers of trigonal prisms (characteristic of the structure type AlB2) and square antiprisms (characteristic of the structure types BaAl4 and CeAl2Ga2), which alternate along the crystallographic direction [010]. The polyhedron surrounding the site partly occupied by the transition metal atoms is compared with the corresponding polyhedra in closely related structures.
[1] Bodak O. and Gladyshevskii E.: Kristallografiya, 1969, 14, 990.
[2] Villars P. and Cenzual K.: Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2014/15. ASM International, Materials Park (OH) 2014.
[3] Francois M., Venturini G., Malaman B. and Roques B.: J. Less-Common Met., 1990, 160, 197.
[4] Weitzer F., Hiebl K. and Rogl P.: Solid State Commun., 1992, 82, 353.
[5] Gil A., Leciejewicz J., Maletka K. et al.: J. Magn. Magn. Mater., 1994, 129, L155.
[6] Norlidah M., Ijjaali I., Venturini G. and Malaman B.: J. Alloys Compd., 1998, 278, 246.
[7] Gil A., Hofmann M., Penc B. and Szytula A.: J. Alloys Compd., 2001, 320, 29.
[8] Gil A., Oles A., Sikora W. and Szytula A.: J. Alloys Compd., 2003, 360, 21.
[9] Malaman B., Venturini G., Pontonnier L. and Fruchart D.: J. Magn. Magn. Mater., 1990, 86, 349.
[10] Starodub P., Zapototska L. and Bodak O.: Visn. Lviv. Derzh. Univ. Ser. Khim., 1996, 36, 57.
[11] Yarovets V. and Gorelenko Y.: Visn. Lviv. Derzh. Univ. Ser. Khim., 1981, 23, 20.
[12] Venturini G., Malaman B., Méot Meyer M. et al.: Rev. Chim. Miner., 1986, 23, 162.
[13] Norlidah M., Venturini G. and Malaman B.: J. Alloys Compd., 1998, 268, 193.
[14] Norlidah M., Venturini G., Malaman B. and Ressouche E.: J. Alloys Compd., 1997, 259, 11.
[15] Norlidah M., Venturini G. and Malaman B.: J. Alloys Compd., 1998, 267, 182.
[16] Venturini G., Norlidah M. and Malaman B.: J. Alloys Compd., 1996, 236, 117.
[17] Venturini G., Ijjaali I. and Malaman B.: J. Alloys Compd., 1999, 288, 183.
[18] Rodriguez-Carvajal J.: Newsletter, 2001, 26, 12.
[19] Fedyna V. and Gladyshevskii R.: Proc. XII Int. Conf. Cryst. Chem. Intermet. Compd., Lviv 2013, 137.
[20] Parthé E., Gelato L., Chabot B. et al.: TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Springer-Verlag, Berlin 1993, 1994.
[21] Schachner H., Nowotny H. and Kudielka H.: Monatsh. Chem., 1954, 85, 1140.
[22] Stepien Damm J., Lukaszewicz K., Gladyshevskii E. and Bodak O.: Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1972, 20, 1029.
[23] Pavlyuk V., Bodak O. and Sobolev A.: Sov. Phys. Crystallogr., 1991, 36, 493.
[24] Cenzual K., Gladyshevskii R. and Parthé E.: Acta Crystallogr. C, 1992, 48, 225.
[25] Shapiev B., Sologub O., Seropegin Y. et al.: J. Less-Common Met., 1991, 175, L1.
[26] Grin Y. and Yarmolyuk Y.: Dopov. Akad. Nauk Ukr. RSR, Ser. A, 1982, 3, 69.
[27] Johrendt D. and Mewis A.: Z. Anorg. Allg. Chem., 1992, 607, 169.
[28] Yatsenko S., Sichevich O., Yarmolyuk Y. and Grin Y.: Dopov. Akad. Nauk Ukr. RSR. Ser. B, 1985, 7, 55.
[29] Yarmolyuk Y., Akselrud L., Grin Y. et al.: Sov. Phys. Crystallogr., 1979, 24, 332.
[30] Zhuravleva M., Bilc D., Pcionek R. et al.: Inorg. Chem., 2005, 44, 2177.